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São Paulo

2018



ALEX KENJI UYEDA MAJIMA

LUCAS HIDEKI SAKURAI

Controlador baseado em redes neurais para navegação em canal de acesso

treinado por dados de manobras realizadas por práticos
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Resumo

O presente trabalho visa abordar o complexo problema de controle de embarcações

maŕıtimas que adentram um porto por meio de um canal de acesso. Devido a essa

complexidade, profissionais conhecidos como práticos realizam as manobras para garantir

agilidade e segurança com a tarefa de conduzir a embarcação dentro dos limites do canal

e reduzir sua velocidade até o final do mesmo permitindo atracar no porto. De forma a

usufruir da experiência desses profissionais e simular a sua tomada de decisões de comandos,

optou-se pela utilização de redes neurais como forma de controle, pois esta técnica requer

o treinamento de uma arquitetura de rede que adere aos dados de referência, no caso,

a sequência de comandos de simulações realizadas por práticos. A primeira etapa do

projeto foi a elaboração desses dados de forma a garantir a sua qualidade e adequação

aos parâmetros de entrada e de sáıda planejados. A segunda etapa foi o ciclo iterativo de

definição e ajuste da arquitetura por meio do treinamento e avaliação de performance. A

terceira e última etapa foi criar uma interface para validação por simulação e possibilitar

a interação da rede neural com o integrador numérico de forma autônoma. Como forma

de desenvolver a rede foi utilizado a linguagem de programação Python associado ao

framework chamado TensorFlow. Desta maneira, o documento discorre sobre as fases de

elaboração e a possibilidade de flexibilizar a automação de embarcações pela utilização

de rede neurais para um mais amplo conjunto de condições, o que poderá aproximar

a tecnologia atual para condições mais realistas, garantir maior segurança ao reduzir a

interferência humana e otimizar o tempo de espera e de entrada nos portos.

Palavras-chaves: Redes neurais. Simulação. Navios.



Abstract

This work aims to tackle the complex task of ship handling which berth in a port through

an access channel. Due to this complexity, professionals known as maritime pilots perform

those maneuvers to ensure agility and safety while travelling through the channel’s limits

and reducing its speed until the end allowing it to berth in the port. In order to benefit

from the experience of those professionals and simulate their command decision making, it

was opted for the application of neural networks as means of control, since this technique

requires the training of a network architecture which will adhere to the reference data,

in this case, the command sequence from simulations performed by maritime pilots. The

first stage of the project consisted of preparing these data in order to guarantee its quality

and suitability to the intended input and output parameters. The next stage was the

interactive cycle of definition and adjustment of the architecture through training and

performance evaluation. The last stage was the development an interface for validation

through simulation and enable an autonomous interaction between the neural network

and the numerical integrator. As means of development of the network the programming

language Python combined with the framework called TensorFlow was used. Thus, this

document discusses the development stages and the possibility of easing the automation

of vessels using neural networks for a wider set of conditions, which may bring closer the

current technology to more realistic conditions, ensure more safety as human interference

is lessen and optimize the waiting time and berthing at ports.

Key-words: Neural networks. Simulation. Vessel.
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mı́nima (21 m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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Tabela 8 – Parâmetros do navio para as condições iniciais no teste de ângulo de
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1 Introdução

1.1 Descrição do tema e motivação

O tema do projeto é a utilização de redes neurais como uma forma de controle para

navegação de embarcações maŕıtimas. A proposta surgiu da complexa tarefa de realizar a

manobra de navios nos portos. Quando os navios estão próximos ao seu destino, é necessário

o aux́ılio de profissionais especializados que possuem os conhecimentos espećıficos daquela

região (relevo submarino, condições do mar e outros), garantindo a segurança e a correta

realização da operação. Os especialistas que comandam essa manobra de dentro do navio e

ao lado do capitão são conhecidos como práticos. Eles possuem o suporte de embarcações

menores, mas de alta potência, conhecidos como rebocadores que seguem os comandos do

prático para posicionar e movimentar o navio.

Entre as diversas manobras realizadas pelo prático está a navegação do navio em

meio ao canal de acesso. Esta operação tem como objetivo realizar a condução do navio

em média velocidade por um canal estreito e em geral dragado que direciona o mesmo

até o porto, no qual ele deverá estar em uma baixa velocidade para que os rebocadores

possam realizar o posicionamento final até o berço. Existem vários fatores que tornam

sua execução complexa, um dos principais fatores é a redução de velocidade que amplifica

a dominância dos efeitos ambientais sobre o navio dificultando o seu controle, portanto,

soluções de controle automático de trajetória são temas de pesquisa. Os controles baseados

em modelagem podem ser custosos de serem desenvolvidos além de ter eficiência apenas em

casos muito espećıficos. Por exemplo, na utilização de linearização, ao simplificar o modelo,

além de reduzir os detalhes de seus efeitos, existe a necessidade de trabalho em torno das

condições definidas, o que, consequentemente, inviabiliza sua utilização em situações reais.

Como os práticos possuem muita experiência na execução desta manobra, o projeto

visa criar um controlador que possa se beneficiar de seu conhecimento e intuição para

contornar esses impedimentos. Portanto, a utilização de redes neurais se mostra interessante,

pois esta permite conceber uma solução que se adapta e simula os dados de treinamento,

logo, poderá ser utilizado uma sequência temporal de estados e comandos em manobras

similares realizadas por esses profissionais servindo de insumo para o aprendizado da rede.

De forma a validar o controlador desenvolvido, foram realizadas simulações com o

integrador numérico do TPN (Tanque de Provas Numérico) a partir de um módulo de
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conexão que permite o envio das condições de estado do simulador para a rede neural e,

em resposta, as ordens de comando adequadas para a manobra no sentido oposto, assim,

demonstrando se o mesmo está apto a manobrar uma embarcação como os práticos que

geraram os dados de treinamento.

Portanto, a rede neural fornece uma forma alternativa de lidar com as complexidades

envolvidas, permitindo o desenvolvimento futuro de sistemas de controle autônomo de

navegação em áreas abrigadas. Isso pode ter diversas implicações, como o melhor controle

da velocidade de avanço pelo controle do propulsor permitindo embarcações de maior

porte em portos de canais de acesso mais curtos, otimização de tempo para realização da

manobra reduzindo as filas para entrada no porto e aumento da segurança ao reduzir a

influência do ser humano.

1.2 Objetivos e requisitos

Sumariamente, o projeto tem como objetivo elaborar uma rede neural treinada

com base na experiência de práticos reais, pois isso permite simular a complexa sequência

de decisões que são baseadas na experiência deles.

Uma manobra de entrada no canal é definida ter sido realizada com sucesso quando

a embarcação permanece dentro dos limites por toda a sua extensão e atinge o seu final

com velocidade baixa o suficiente para que a manobra seguinte de atracação não apresente

riscos às pessoas, ao porto e às outras embarcações. De forma mais precisa, podem ser

definidos os seguintes requisitos que validam a manobra:

• Distância mı́nima das margens: 0.5 boca em relação a cada margem, sendo a boca

máxima o termo que se refere a maior largura da seção transversal da embarcação;

• Velocidade máxima ao final do canal: 5.0 nós (2.5 m/s).

Para que o controle seja viável, a rede neural também deve conseguir ler e interpretar

as entradas, por exemplo, a distância com a linha de centro do canal, para assim decidir

quais os comandos de leme (direção) e de máquina (rotação do propulsor) adequados para

cumprir o objetivo sendo sua validação final realizada ao simular sua performance com o

integrador numérico do TPN.

Como extensões do projeto, ou seja, além do objetivo primário, é de interesse

generalizar o máximo posśıvel, desta maneira, seriam realizadas novas implementações
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e otimizações para cumprir condições extremas que atingiriam os limites dos requisitos

supracitados, por exemplo, condições ambientais mais intensas que os presentes nos dados

de treinamento, canais de acesso mais curtos para embarcações de mesmo porte, canais

de mesma extensão para embarcações de maior porte e outros testes. Essa extensão seria

relevante pois tornaria a rede neural mais consistente e segura além de permitir averiguar

critérios e normas de segurança ou mesmo realizar o planejamento de canais para novos

projetos de portos.

1.3 Organização do texto

O presente trabalho está elaborado de forma a compreender as pesquisas e as etapas

realizadas no desenvolvimento do projeto de forma que facilite o embasamento do leitor

na temática do trabalho e permita compreender as decisões dos autores até os resultados

obtidos.

No caṕıtulo 2 é apresentado o estado da arte demonstrando o desenvolvimento da

área de automação por diversas frentes até as abordagens das metodologias utilizadas

nesse projeto e pesquisas semelhantes que enfatizam a relevância na utilização de redes

neurais na área de manobra de embarcações em canais de acesso.

No caṕıtulo 3 é abordado o conteúdo teórico para se compreender o funcionamento

de uma rede neural, desde formas de aprendizado e sua composição até os processos de

propagação e retropropagação que são os algoritmos base para gerar o resultado e adequar

os pesos e vieses da rede neural, respectivamente. Também são introduzidos alguns modelos

de redes neurais recorrentes utilizados no projeto.

No caṕıtulo 4 é apresentado a forma em que o problema será resolvido, ou seja, são

ressaltadas as técnicas implementadas e quais as ferramentas auxiliares que são utilizadas

em cada etapa.

No caṕıtulo 5 são abordados os conceitos e propriedades fundamentais que in-

fluenciam na simulação da embarcação e a forma como foram processados os dados de

treinamento a partir do banco de simulações realizadas por práticos no TPN. No processa-

mento, as etapas são descritas por meio de um exemplo para tornar a explicação mais

didático e realista.

No caṕıtulo 6 é apresentado a elaboração da rede neural focando na arquitetura da
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mesma e relacionando como o embasamento teórico do caṕıtulo 3 foi utilizado no projeto.

No caṕıtulo 7 é abordado o processo de elaboração da validação da rede neural por

meio de uma integração entre a solução desenvolvida e o integrador numérico que permite

simular as condições de navegação.

No caṕıtulo 8 são apresentados os resultados obtidos com as redes neurais desenvol-

vidas durante este projeto por meio da descrição das etapas e dificuldades verificadas no

decorrer do trabalho.

No caṕıtulo 9 é feita uma análise dos resultados obtidos com as posśıveis explicações

do comportamento observado e verificação dos requisitos levantados. Por fim, são feitas

sugestões de projetos para continuidades da pesquisa.

No caṕıtulo 10 o trabalho é finalizado ao citar as conclusões obtidas.
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2 Estado da arte

O desenvolvimento da engenharia sempre esteve muito relacionado aos problemas

da humanidade. Em cada peŕıodo, novas tecnologias permitiram o avanço do conhecimento

cient́ıfico e trouxeram benef́ıcios a sociedade. Embora muitos temas sejam estudados

em paralelo nas grandes universidades, alguns ganham um destaque maior, seja por se

acreditar que o futuro caminha nessa direção ou apenas por questões midiáticas tornando

a linha de conhecimento mais “popular”. Nos dias de hoje muito se fala de automação, seja

de fábricas, processos, robôs e outros, mas especialmente para o contexto desse trabalho:

véıculos de transporte. Por anos os carros autônomos foram um sonho da humanidade,

hoje há grandes avanços nessa frente, por exemplo, (PADEN et al., 2016) demonstram

como o problema dos carros autônomos na verdade é uma série de subproblemas que

podem ser resolvidos por diversas técnicas em conjunto, por exemplo, o primeiro problema

é a definição da rota para atingir um determinado destino, essa necessidade é resolvida

na camada de “roteamento” em que seu resultado serve como entrada para a camada

“comportamental” que define como interagir com os outros véıculos e assim por diante até

se obter um véıculo completamente autônomo; (ALTHOFF; MERGEL, 2011) realizam

o estudo da adequação de técnicas de probabilidade, cadeia de Markov e Monte Carlo,

para avaliação de segurança em carros autônomos, mais especificamente nos casos de

obstáculos na trajetória e riscos de colisão; entretanto, não apenas de tecnologia e métodos

matemáticos essa área é composta, questões éticas também são envolvidas como consta no

artigo de (LIN, 2016) em que cita diversas situações para reflexão sobre como os carros

autônomos devem reagir.

As tecnologias de automação são mais populares nos véıculos terrestres devido a

proximidade com o dia a dia das pessoas, mas isso não significa que essas inovações estão

restritas a este âmbito. Pelo contrário, o desenvolvimento ocorre em outros meios, por

exemplo, véıculos maŕıtimos. Embora as condições de controle sejam muito diferentes nos

dois casos, por exemplo, as inércias envolvidas, o meio em que o véıculo está imerso, as

normas regulamentativas para segurança e outros, muitas técnicas podem ser reaproveitadas

e inclusive algumas motivações são compartilhadas. Nos dois casos, o risco de colisão é

um problema vital, a automação pode ser um caminho promissor para solucionar ou, pelo

menos, minimizar isso, já que 75% a 96% dos acidentes possui influência de erro humano
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segundo (PERERA; CARVALHO; SOARES, 2009).

No âmbito naval, o risco de colisões ganhou muita importância devido a crescente

frota de navios. Uma forma de evitar essas fatalidades é a regulamentação da navegação.

A IMO (International Maritime Organization) elaborou um conjunto de normatizações

conhecidos como COLREGS (Collision Regulations) que determina situações e manobras

a serem realizadas para evitar colisões. (BELCHER, 2002) realiza um estudo sobre as

COLREGS em que conclui que uma regulamentação não é suficiente para evitar riscos,

seja pela questão subjetiva já que depende da interpretação momentânea de quem está a

bordo, mas seja também pela impossibilidade de registrar e normatizar todas as situações

adversas posśıveis.

Assim, as soluções tecnológicas de aux́ılio a tripulação se tornam ferramentas

cruciais que reduzem a subjetividade do homem na observação das condições momentâneas

para a tomada de decisões. (STATHEROS; HOWELLS; MAIER, 2008) citam algumas

tecnologias de navegação entre elas o GPS (Global Positioning System), o Radar, o ARPA

(Automatic Radar Plotting Aid) e instrumentos de monitoração das condições atmosféricas

e da água. Esses instrumentos apenas fornecem dados mais precisos e objetivos a tripulação,

por isso não são suficientes para evitar colisão, já que a interpretação e tomada de decisão

ainda depende do homem. Tecnologias auxiliares que realizam parte da interpretação

desses dados são muito úteis, por exemplo, (SATO; ISHII, 1998) desenvolveram uma

análise utilizando imagens por infravermelho para prever rotas de outros navios por meio

de informações adicionais ao Radar como tamanho, tipo e alterações aparentes no aspecto

da embarcação, dados esses que seriam identificados pela tripulação estando sujeitos a

subjetividade.

De forma a restringir a influência humana na interpretação e decisão das ações,

uma solução adicional seria a elaboração de pilotos automáticos. Assim, é necessário a

existência de uma malha de controle que recebe os dados dos instrumentos anteriormente

citados, interpreta a situação atual e define os comandos adequados para atingir um dado

objetivo. (FOSSEN, 2000) realiza um estudo do desenvolvimento da teoria de controle

não linear baseado em modelos para sistemas maŕıtimos que permitiu obter sistemas de

equiĺıbrio dinâmico, seguidores de trajetória e controle de sistemas subatuados por meio de

diversas tecnologias desde controladores PID (proportional–integral–derivative) até pilotos

automáticos mais avançados com uso de LQG (Linear–quadratic–Gaussian) e controle por

H∞. Uma das grandes dificuldades ao se utilizar esses controladores é a consideração das
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não linearidades envolvidas que perturbam o sistema como as condições ambientais, nesse

sentido, (TANNURI et al., 2010) utilizam uma técnica alternativa baseada em controle

não linear robusto por modos deslizantes, apresentando robustez e facilidade de ajuste.

Não restrito a apenas aplicações maŕıtimas, desenvolvimentos de tecnologias de

outras áreas também podem ser reaproveitadas. Além dos carros autônomos, uma se-

gunda área muito influente atualmente e correlata a primeira é a da inteligência artificial.

(MAKRIDAKIS, 2017) aborda o desenvolvimento desse campo como uma nova revolução

assim como foi a revolução industrial e a revolução digital impactando a sociedade toda.

Um exemplo que demonstra a influência nos dias de hoje é o fato da Google em 2012 ter

apenas 2 projetos de deep learning enquanto em 2017 mais de 1000 projetos estavam em

andamento. A aplicabilidade desses conceitos é muito ampla, por exemplo: em neurociência

e visão computacional, (KRUTHIVENTI; AYUSH; BABU, 2017) utilizam redes neurais

convolucionais para identificar o padrão atuante no mecanismo de atenção visual do ser

humano; em análise de históricos financeiros, (WAN; SI, 2017) utilizam ANFIS (adaptive

neuro fuzzy inference system) que define padrões e tendências da flutuação dos dados;

em medicina, (BEHESHTI; DEMIREL; MATSUDA, 2017) utilizam algoritmos genéticos

para análise de imagens de ressonância magnética para identificação de tendências de

Alzheimer; em geotecnia, (SHAHIN, 2016) explora a área por diversas técnicas (redes

neurais, algoritmos genéticos e regressão polinomial evolutiva), segundo o autor existem

problemas muito complexos e não muito bem compreendidos nessa área o que torna os

modelos imprecisos ou muito simplificados, sendo a inteligência artificial uma alternativa

pois esta aprende baseada nos dados reais e completos podendo ser refinado por novos

treinamentos.

Da mesma maneira que os exemplos anteriores demonstraram a versatilidade das

técnicas de inteligência artificial para resolução de problemas complexos, a mesma pode

ser utilizada no contexto maŕıtimo, especialmente para resolver problemas de colisão e

condução automática. (ROBERTS et al., 2003) apresenta a evolução dos pilotos automáticos

maŕıtimos em que o modelo original utilizava controladores PID e evoluiu para controladores

inteligentes com a utilização de lógica fuzzy e redes neurais como forma de simular as

complexas tomadas de decisões dos timoneiros. (LEE; KIM, 2004) e (LEE; KWON; JOH,

2004) apresentam utilizações de lógica fuzzy em condução de véıculos maŕıtimos de forma

a evitar situações de colisão respeitando normas da COLREGS, demonstrando ser uma

alternativa tanto para reelaboração de trajetórias em tempo real quanto garantir que os
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desvios de trajetória sejam realizados dentro de uma zona segura e efetivos contra objetos

estáticos e em movimento. (AHMED; HASEGAWA, 2013) estudam o complexo movimento

de atracação de embarcações que sofre muita influência dos efeitos ambientais especialmente

em velocidades baixas, para solucionar o problema os autores estudaram o uso de redes

neurais associadas a um controlador PD de forma a simular as ações realizadas pelos

homens, o controlador inteligente apresentou resultados satisfatórios mesmo em situações

diferentes dos dados de treinamento. (IM; NGUYEN, 2017) realizam o treinamento de

uma rede neural com dados de atracação em um determinado porto e realizam os testes

de verificação da solução em condições de um outro porto obtendo resultados limitados,

mas que demonstram a versatilidade que o controle inteligente possui.

Existe um ponto de semelhança entre os vários artigos citados e até mesmo outros

artigos de controle em geral que é a utilização de simulações como prova de conceito.

Especialmente na área naval, os objetos de estudo são dif́ıceis de serem estudados em

modelos reais, seja pelo seu tamanho, custo, disponibilidade e outros fatores, sendo assim,

o uso de simulações é um ponto crucial na realização das pesquisas. (SOUZA JR. et al.,

2009) apresentam duas simulações computacionais de manobras em canais brasileiros,

desde a concepção dos modelos até a entrada de comandos para análise de respostas.

Projetos de simuladores completos como esses ou até mais simples permitem realizar

análises detalhadas, rápidas e versáteis.
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3 Abordagem teórica

3.1 Variância e Correlação

Uma etapa importante para o desenvolvimento das redes neurais envolve a análise

de correlação dos dados, com ela podemos avaliar a qualidade da base de dados. Para

tanto é preciso compreender os conceitos de variância e correlação. A variância mede a

dispersão de uma distribuição em torno da média (BARBER, 2012):

σ2 =

n∑
i=1

(xi − µ)2

n
(1)

Onde xi representa cada elemento da distribuição, µ é a média dessa distribuição e

n é a quantidade de elementos.

A covariância é a propriedade que mostra o ńıvel de relação entre duas variáveis X

e Y aleatórias não independentes (DEVORE, 2012).

Cov(X, Y ) =
∑
x

∑
y

(x− µx)(y − µy)p(x, y) (2)

Sendo p(x, y) a função de probabilidade conjunta das variáveis X e Y .

Contudo, os valores obtidos pela covariância apresentam uma falha pelo fato de

dependerem criticamente das unidades de medida (DEVORE, 2012). O coeficiente de

correlação visa resolver este problema e é definido como:

Corr(X, Y ) = ρX,Y =
Cov(X, Y )

σXσY
(3)

Em que σX e σY é o desvio padrão das variáveis X e Y , respectivamente.

Tal definição limita o valor de correlação entre −1 ≤ Corr(X, Y ) ≤ 1, sendo

posśıvel analisar a “força” da relação entre as variáveis independentemente de sua unidade.

Quanto maior o módulo de seu valor, mais forte é a correlação entre as variáveis. O sinal

positivo indica que as duas variáveis possuem a mesma tendência de comportamento e o

sinal negativo representa o oposto.



23

3.2 Aprendizagem

Antes de explicar os prinćıpios matemáticos que regem uma rede neural é interessante

compreender uma das etapas fundamentais para seu funcionamento, a aprendizagem. Assim

como um ser humano, a percepção e tomada de decisões decorre da sua exposição a fatos que

serão internalizados e compreendidos. Em (RUSSELL; NORVIG, 2004) são apresentadas

três divisões básicas para aprendizagem segundo a realimentação utilizada:

• Aprendizado supervisionado: ocorre aprendizado por meio de um mapeamento

entrada-sáıda previamente definido, ou seja, os dados de entrada estão classificados

com as sáıdas esperadas de forma que os seus parâmetros serão adequados para que

proporcionem uma inferência similar;

• Aprendizado não-supervisionado: ocorre aprendizado sem mapeamento entrada-

sáıda previamente definido, ou seja, o agente receberá apenas as entradas e deverá

deduzir os padrões presentes nelas por conta própria;

• Aprendizado por reforço: também não apresenta um mapeamento entrada-sáıda,

mas o aprendizado é baseado em recompensas, por meio de ações corretas serão

retribúıdas as recompensas para que o agente compreenda quando acertou, assim,

iterativamente, converge ao comportamento adequado.

Desta maneira, como o objetivo do projeto é transferir a experiência dos práticos

para a rede neural, será utilizado um aprendizado supervisionado em que as entradas são

os parâmetros que definem o estado da embarcação em dado instante de tempo e as sáıdas

serão os comandos selecionados pelo profissional. Portanto, o restante deste caṕıtulo será

focado nesta forma de aprendizado.

3.3 Redes neurais

A unidade básica do cérebro é o neurônio, célula que se interliga com outras de

forma que em conjunto possam transmitir e processar os sinais elétricos. Analogamente,

de forma que se possa reproduzir sua capacidade funcional, foram elaboradas as redes

neurais artificiais que são compostas por unidades de neurônios artificiais interligados

representados por modelos matemáticos.

A teoria a seguir está baseada em (NG, 2018) e também será o padrão de notação
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utilizado. Cada unidade pode ser compreendida como uma função matemática de forma que

recebe entradas e produz uma sáıda. Uma arquitetura de conexão entre essas unidades está

representada na figura 1, no lado esquerdo estão representados os parâmetros de entrada

que mais genericamente seriam dados por x
(i)
j , em que o subscrito representa o parâmetro

de uma entrada e o sobrescrito entre parênteses o ı́ndice da entrada, por exemplo, no caso

deste projeto, x
(1)
1 poderia ser a distância à linha de centro da simulação 1, x

(1)
2 poderia ser

a distância ao final do canal da simulação 1, x
(2)
1 poderia ser a distância à linha de centro

da simulação 2 e x
(2)
2 poderia ser a distância ao final do canal da simulação 2. Ao lado

direito estão representadas as camadas ocultas, poderiam existir muitas outras camadas e

cada uma com muitas outras unidades, neste caso, estão representadas 2 camadas com 4 e

3 unidades, respectivamente, da esquerda para direita. Finalmente, na extrema direita está

a camada de sáıda em que ŷ representa o valor inferido pela rede neural para a entrada

(x1, x2, x3). Embora tenha sido nomeado a entrada como uma camada, geralmente esta

não é considerada nas numerações, portanto, considera-se que a arquitetura da figura

possui apenas 3 camadas sendo 2 ocultas e 1 de sáıda. Em cada unidade está representado

o resultado da ativação a
[i]
j em que o subscrito representa o ı́ndice da unidade em uma

camada e o sobrescrito entre colchetes o ı́ndice da camada.

Cada unidade da rede neural realiza os dois processos representados no diagrama

da figura 2. Para um vetor de entrada x ∈ Rnx com nx sendo o número de parâmetros, a

primeira unidade da camada 1 realiza uma ponderação linear por:

z
[1]
1 = w

[1]T
1 x+ b

[1]
1 (4)

Em que w
[1]T
1 é o vetor de pesos transposto de w

[1]
1 ∈ Rnx e b

[1]
1 um valor de viés tal

que b
[1]
1 ∈ R. Em seguida é utilizada uma função não linear g : R→ R resultando no valor

da ativação que é a sua própria sáıda:

ŷ
[1]
1 = a

[1]
1 = g(z

[1]
1 ) (5)

A função g(·) é necessária pois, em sua ausência, todas as unidades gerariam

resultados lineares, tornando o conjunto de todos os resultados da rede também linear,

o que faria com que todas as unidades e camadas extras não proporcionassem efeitos

adicionais, sendo assim, redes mais simples conseguiriam obter o mesmo resultado com

menos processamento.
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Figura 1 – Exemplo de arquitetura de rede neural de 3 parâmetros de entrada e 3 camadas
sendo duas ocultas e uma sáıda

Fonte: Autores, baseado em (NG, 2018)

Alguns exemplos para essa função seriam a sigmóide, definida como:

g(z) = σ(z) =
1

1 + e−z
(6)

Ou a ReLU (Rectified Linear Unit), definida como:

g(z) = max(0, z) (7)

A escolha da função mais adequada depende do propósito da rede neural, por

exemplo, em um classificador binário a sáıda deve ser binária (0 ou 1) então a sigmóide

seria uma opção adequada. Mas sua derivada tende a 0 conforme |z| aumenta, o que pode

tornar a convergência mais lenta, por esta razão, a função ReLU é muito utilizada nas

camadas ocultas, propriedades observáveis na figura 3.
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Figura 2 – Diagrama de duas etapas representando a primeira unidade da rede neural na
camada 1

Fonte: Autores, baseado em (NG, 2018)

Figura 3 – Plotagem da sigmóide, equação 6, e da ReLU, equação 7

Fonte: Autores

Pode-se generalizar o processo para toda a rede neural de forma a otimizar o proces-

samento utilizando vetorização durante a implementação em cada camada. Considerando

que os dados de treinamento possuem m entradas de nx parâmetros cada, define-se a matriz

X ∈ Rnx×m das entradas. Em uma camada l com n[l] unidades, define-se a matriz de pesos

W [l] ∈ Rn[l−1]×n[l]
e vetor de viés b[l] ∈ Rn[l]

que pode ser expandido para B[l] ∈ Rn[l]×m ao

replicar seus valores já que todas as m entradas utilizam o mesmo viés. Pela aplicação da

função de ativação g[l] : Rn[l]×m → Rn[l]×m haverá a sáıda A[l] ∈ Rn[l]×m e para simplificar



27

a notação, pode-se considerar A[0] = X e n[0] = nx, logo, para cada camada l:

Z [l] = W [l]TA[l−1] +B[l]

A[l] = g[l](Z [l])
(8)

Esse processo definido pelas equações em 8 é conhecido como propagação, ou seja,

é a inferência que a rede neural realiza a partir das entradas.

3.4 Treinamento

De posse do mapeamento entrada-sáıda, o intuito de uma rede neural é inferir uma

sáıda ŷ que aproxime da sáıda mapeada y, ou seja, para cada entrada i se espera ŷ(i) ≈ y(i).

Para simplificar a explicação, primeiro será considerado uma única unidade definida pelo

peso w e viés b. De forma a mensurar a sua performance, pode-se definir uma função de

erro, por exemplo, utilizando o erro quadrático dado por:

L (ŷ, y) = (ŷ − y)2 (9)

Desta forma, pode ser definida a sua função de custo que mensura a performance

em todo o conjunto de m entradas de treinamento:

J(w, b) =
1

m

m∑
i=1

L (ŷ(i), y(i)) (10)

Do qual se obtém o erro quadrático médio (mean squared error - MSE ):

J(w, b) =
1

m

m∑
i=1

(ŷ(i) − y(i))2 (11)

Portanto, os resultados da unidade podem ser melhorados ao reduzir o valor da

função de custo, pois isso significa que os valores inferidos estão próximos aos valores

esperados. Em outras palavras, o objetivo é calibrar os valores do peso e do viés da unidade

de forma que a função custo se aproxime do seu valor mı́nimo. Para encontrar esses valores

adequados, utiliza-se um método chamado gradiente descendente, um método iterativo

que por meio da derivada define a direção no espaço a ser seguido, ou seja:

w := w − α∂J(w, b)

∂w

b := b− α∂J(w, b)

∂b

(12)
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Em que o termo α é conhecido como a taxa de aprendizado, ou seja, o tamanho do

passo a ser avançado na direção de decrescimento indicado pela derivada.

Em uma rede neural com L camadas, isso poderia ser generalizado para uma função

custo J(W [1], b[1],W [2], b[2], ...,W [L], b[L]) análoga:

J(W [1], b[1],W [2], b[2], ...,W [L], b[L]) =
1

m

m∑
i=1

L (ŷ(i), y(i)) (13)

Portanto, para cada camada l é realizada a operação:

W [l] := W [l] − α∂J(W [1], b[1],W [2], b[2], ...,W [L], b[L])

∂W [l]

b[l] := b[l] − α∂J(W [1], b[1],W [2], b[2], ...,W [L], b[L])

∂b[l]

(14)

Sendo o processo definido pelas equações em 14 conhecido como retropropagação,

ou seja, o treinamento da rede neural a partir da minimização da função custo que significa

uma aderência dos resultados inferidos aos valores conhecidos. Uma iteração completa, ou

seja, a realização de uma propagação e uma retropropagação é conhecida como epoch.

O processo de treinamento pode gerar um problema importante conhecido como

overfitting em que a rede neural é treinada em excesso e inclui em seu aprendizado os

rúıdos intŕınsecos dos dados de acordo com a flexibilidade permitida ao modelo. A figura 4

ilustra o efeito de modelos que aderiram pouco e muito aos dados, nota-se que a curva

do custo na base de treinamento é decrescente conforme a flexibilidade do modelo, mas a

curva do custo na base de teste não, caracterizando na região ascendente a ocorrência de

overfitting, ou seja, o modelo faz previsões muito boas para a base de treinamento, mas

não em uma base diferente.

Existem métodos para evitar a ocorrência deste problema, um deles é conhecido

como dropout em que unidades da rede são eliminadas aleatoriamente durante o treinamento

de forma a reduzir o excesso de aderência do modelo.
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Figura 4 – Do lado esquerdo estão representados os modelos treinados para aderir aos
dados gerados a partir da curva preta com rúıdos, nota-se que a curva amarela
tem pouca flexibilidade e ocorrendo o oposto para a curva verde. Do lado direito
estão representadas as curvas de custo na base de treinamento (cinza) e na base
de teste (vermelho) com os pontos coloridos indicando os respectivos erros em
relação aos modelos da esquerda, demonstrando o overfitting do modelo verde.

Fonte: (JAMES et al., 2014)

3.5 Redes neurais recorrentes

As redes neurais na estrutura apresentada até o momento são conhecidas como

redes neurais sem realimentação, são redes mais simples que podem obter resultados muito

bons em diversas aplicações, mas nem tanto em outras. Uma das desvantagens que podem

ser observadas está em seu próprio nome: sem realimentação, ou seja, as entradas estão

individualizadas e isoladas, uma não afeta o resultado da outra. Desta maneira, situações

em que os dados de treinamento possuem uma ordem lógica não são detectados. Por

exemplo, se o objetivo fosse elaborar um rede neural que detecte nomes, na frase “João

estuda mecatrônica”, cada palavra seria aprendida individualmente, mas a relação entre

elas devido a ordem não seria detectada, logo, a informação impĺıcita de que quem (João)

realiza uma ação (estuda mecatrônica) possui alta chance de ser um nome, não seria

considerada pela rede neural.

Esse problema é recorrente e relevante na área de aprendizado de máquinas, por

exemplo, a detecção de sequências é importante em textos, em música, em sons e outros.
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Para abordar essa questão, foram desenvolvidas as redes neurais recorrentes. De forma a

explicar seu funcionamento, será necessário incrementar a notação já utilizada: pode-se

definir x<k> como a k-ésima parte da sequência de x, por exemplo, sendo a frase anterior

o valor de x então x<1> será “João”, x<2> será “estuda” e x<3> será “mecatrônica”.

A figura 5 apresenta um modelo esquemático do funcionamento de uma rede neural

recorrente. Assim como na notação anterior, mas acrescido do sobrescrito entre os sinais de

< e >, x representa a entrada, a representa o resultado da função de ativação, y representa

a sáıda ou o valor previsto para cada entrada e Tx representa o número de subpartes na

entrada x. Algebricamente essa estrutura pode ser representada como:

a<k> = g(waaa
<k−1> + waxx

<k> + ba)

ŷ<k> = g(wyaa
<k> + by)

(15)

Em que a notação wuv indica o peso para qual função u está sendo calculada e sobre

qual parâmetro v de entrada da camada, admitindo os valores a, x ou y. Por exemplo, wax

é o peso para a entrada x<k> no cálculo da função de ativação a ser transmitido para a

camada k + 1. A notação bu tem representação análoga, mas para o viés.

Figura 5 – Exemplo esquemático do funcionamento de uma rede neural recorrente

Fonte: Autores, baseado em (NG, 2018)

Detalhando seu funcionamento, a figura 5 está representando uma única camada da

rede neural recorrente em que as entrada x<k> entram individualmente e são processadas

gerando dois tipos de sáıda: ŷ<k> e a<k> sendo a primeira a sáıda prevista pela rede

análogo ao da rede neural sem realimentação e a segunda é uma sáıda de comunicação



31

entre as entradas < k >, ou seja, é a realimentação de uma entrada anterior que será

considerada ao realizar o novo processamento.

Desta maneira para realizar a definição e treinamento da rede como um todo podem

ser utilizados os mesmos prinćıpios já abordados como a escolha da taxa de aprendizagem,

número de unidades, quantidade de camadas, função de custo, retropropagação e assim

por diante.

O modelo apresentado é uma ideia geral de como funciona a retroalimentação, mas

note que a informação principal advém da entrada anterior e não do conjunto todo, por

essa razão outros modelo de unidade para redes neurais recorrentes foram desenvolvidos

de forma a implementar uma espécie de “memória” que possa armazenar informações

relevantes de mais entradas, por exemplo, a GRU (Gated Recurrent Unit) esquematizada

na figura 6.

Figura 6 – Modelo esquemático de uma unidade do tipo GRU

Fonte: Autores, baseado em (NG, 2018) e (CHANGHAU, 2017)

Este tipo de unidade pode ser descrita segundo as equações em 16:

c̃<k> = tanh(wccΓrc
<k−1> + wcxx

<k> + bc)

Γu = σ(wucc
<k−1> + wuxx

<k> + bu)

Γr = σ(wrcc
<k−1> + wrxx

<k> + br)

c<k> = Γuc̃
<k> + (1− Γu)c

<k−1>

a<k> = c<k>

(16)
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A notação segue o mesmo padrão anterior acrescido de novas variáveis. A letra c

é uma abreviação para memory cell ou célula de memória sendo sua função armazenar

o estado de entradas passadas. Com base na memória passada c<k−1> e a nova entrada

x<k> será realizado o cálculo para definir o posśıvel novo valor de c<k> definido como c̃<k>.

Esse novo valor pode ou não ser a sáıda c<k>, isso dependerá de Γu. A variável Γ é o gate

ou portão que designa o nome da célula (GRU). Existem dois tipos de gates, o Γu, u de

update, responsável por definir se c<k> será igual a c<k−1> ou c̃<k> e o Γr, r de relevance,

responsável por definir qual a relevância de c<k−1> no cálculo de c̃<k>.

A função σ(·) representa a sigmóide como descrita na equação 6 e tanh(·) representa

a tangente hiperbólica dada por:

tanh(z) =
ez − e−z

ez + e−z
(17)

Figura 7 – Plotagem da tangente hiperbólica, equação 17

Fonte: Autores

Nota-se que a escolha de σ(·) para o cálculo de Γr se deve ao fato da mesma variar

entre 0 e 1 representando um percentual de c<k−1> no novo valor de c̃<k>. Enquanto a

tanh(·) varia de -1 a 1 e possui uma estreita zona de transição como pode ser observado

na figura 7, desta maneira, na maioria dos casos a função retorna um valor próximo de -1

ou de 1 selecionando c<k−1> ou c̃<k>.

Outro modelo de unidade utilizado para redes neurais recorrentes é o LSTM (Long

Short-Term Memory), semelhante ao modelo GRU, mas com gates adicionais como pode

ser observado na figura 8. Suas equações estão em 18.
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Figura 8 – Modelo esquemático de uma unidade do tipo LSTM

Fonte: Autores, baseado em (NG, 2018)

c̃<k> = tanh(wcaa
<k−1> + wcxx

<k> + bc)

Γu = σ(wuaa
<k−1> + wuxx

<k> + bu)

Γf = σ(wfaa
<k−1> + wfxx

<k> + bf )

Γo = σ(woaa
<k−1> + woxx

<k> + bo)

c<k> = Γuc̃
<k> + Γfc

<k−1>

a<k> = Γotanh(c<k>)

(18)

Percebe-se que existe uma semelhança entre as duas unidades, mas esta é mais

complexa ao apresentar um gate Γu análogo ao anterior, mas também um gate Γf , f de

forget ou esquecer, portanto, manter ou não o antigo valor c<k−1> depende de dois gates

nesta célula ao invés de apenas Γu como na célula GRU. Adicionalmente, existe um Γo, o

de output ou sáıda, que pondera a sáıda da ativação segundo o valor de c<k>.

Não existe um consenso no meio acadêmico entre o uso de GRU e LSTM, em geral

o LSTM é mais utilizado, mas observa-se pelo descrito que o GRU é mais simples, logo,

pode apresentar menor complexidade e melhor performance em determinados casos.
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4 Metodologia e ferramentas

A metodologia base para a solução do problema apresentado é a utilização de redes

neurais, pois esta não requer a modelagem das não linearidades e pode ser utilizada como

um análogo das tomadas de decisões dos práticos além de já ter apresentado resultados

promissores como abordado no caṕıtulo 2.

Como a intenção é utilizar os dados de simulações passadas, a forma mais adequada

é a utilização de um aprendizado supervisionado como descrito em mais detalhes na seção

3.2. De forma a gerar os dados de treinamento, como detalhado na seção 5.4, foi necessária

a utilização da linguagem Python, esta que também será utilizada no desenvolvimento da

rede neural.

A linguagem Python foi uma escolha baseada em diversas premissas que entre elas

podem ser citadas:

• Os autores já possuem experiência com a linguagem e softwares auxiliares de forma

a facilitar a execução do projeto. Entre esses softwares está a IDE (Integrated

Development Environment) denominada PyCharm da empresa JetBrains que auxilia

o desenvolvimento do código fornecendo funções adicionais especialmente para realizar

o debug do código;

• A linguagem também possui bibliotecas úteis como o NumPy que permite otimizar

o código por vetorização ou o Pandas que facilita a manipulação dos dados de

treinamento;

• É uma linguagem de programação muito utilizada por desenvolvedores de redes

neurais portanto é posśıvel encontrar uma comunidade muito ativa, facilitando a

busca por soluções aos problemas deparados;

• Existem muitos frameworks de redes neurais que são compat́ıveis com a linguagem

permitindo maior flexibilidade na seleção da mesma, por exemplo, TensorFlow da

Google Brain, PyTorch hoje desenvolvido pelo Facebook, Keras de François Chollet

entre outros.

Para o controle das versões foi utilizado o GitHub, serviço escolhido principalmente

pela familiaridade dos autores e servindo aos propósitos básicos necessários (facilidade de

uso, controle, compatibilidade com PyCharm e gratuidade).
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O framework utilizado foi o TensorFlow, os outros também poderiam ser boas

soluções, mas alguns pontos do TensorFlow ressaltaram sua escolha:

• É um framework popular na comunidade, desta forma, assim como o Python, possui

diversas fontes para aprendizado e resolução de problemas;

• Utilização por grupos de pesquisa relevantes como o DeepMind, adesão por grandes

empresas como o Twitter além de ser desenvolvido pelo Google, garantindo maior

credibilidade para sua escolha;

• O framework possui suporte para diversos modelos de redes neurais, desta forma, foi

posśıvel testar várias implementações diferentes como redes neurais sem realimentação

até redes neurais recorrentes;

• O framework possui suporte para utilização de CUDA, plataforma desenvolvida pela

Nvidia, agilizando o processo de treinamento da rede neural;

• Uma das dificuldades no desenvolvimento de redes neurais é compreender o que

está ocorrendo nela para conseguir reparar problemas ou otimizar, portanto, o

TensorBoard é interessante para facilitar o desenvolvimento por ser uma ferramenta

visual para avaliação.

Para facilitar o uso do TensorFlow, foi utilizada a implementação do Keras já

incluso no pacote, este é executado por cima do primeiro e sua função é permitir que

a criação de redes neurais seja mais intuitiva e prática, assim, agilizando o processo de

desenvolvimento, correção e otimização da solução proposta.

A escolha da arquitetura ideal para a rede neural é complexa de ser definida, muitas

vezes é realizada por teste e avaliação de performance. Desta maneira, iniciou-se utilizando

uma rede neural sem realimentação baseada no trabalho de (AHMED; HASEGAWA, 2013)

em que foi desenvolvido com o uso de mı́nimo erro quadrático e averiguado diferentes

valores de unidades em cada camada. Nas 2 camadas ocultas, o melhor resultado para o

comando de leme foi dado por 15 unidades na primeira camada e 10 na segunda enquanto

para comando de máquina, 10 unidades na primeira e 5 unidades na segunda. Esta foi

apenas uma base para a arquitetura inicial, ela foi treinada com os dados do TPN e

averiguada quanto a performance.

Como esta rede neural não satisfez os requisitos, outras arquiteturas mais complexas

também foram testadas. Por exemplo, o uso de redes neurais recorrentes, pois esta apresenta

uma “memória” das entradas passadas o que possibilita compreender que existe uma série
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temporal entre os comandos, permitindo uma maior complexidade para o seu aprendizado,

logo, esperou-se melhor aderência aos dados.

Para o processo de seleção da solução mais adequada foi realizado o treino da rede

neural com os dados de treinamento e validado no integrador numérico, Dyna. A literatura

como em (NG, 2018) e outras fontes abordam a escolha por meio da divisão dos dados

de treinamento em duas ou três partes, basicamente, 70% dos dados para treinamento e

30% para validação. O problema desta abordagem, no caso deste projeto, é que o sistema

em questão é um sistema dinâmico, portanto, se a rede neural avaliar que é necessário

um comando de leme ou de máquina diferente daquele realizado pelo prático nos dados

de treinamento, a próxima entrada registrada não estará retratando fielmente o estado

naquele momento, logo, estará inválido. Desta maneira, os dados de treinamento foram

utilizados para verificar se, pelo menos, a rede estava aderindo ao resultado esperado,

assim, a comparação era útil para realizar uma primeira verificação do resultado, mas não

sendo considerada condição suficiente para invalidar a solução obtida.

A última ferramenta a ser utilizada é do Centro de Simulações Náuticas e Portuárias

do TPN que conta com simuladores para estudo de manobrabilidade de embarcações.

Segundo (TPN-USP, 2017), o centro é credenciado pelo ITTC (International Towing Tank

Conference) e IMSF (International Marine Simulator Forum), o que garante confiabilidade

na simulação e credibilidade ao validar a rede neural proposta. Para este projeto, será

utilizado o integrador numérico do simulador, denominado Dyna, que permite processar

numericamente as equações que regem os fenômenos f́ısicos da navegação de uma em-

barcação. Durante a fase de otimização da rede neural, foi elaborada uma interface em

Python que permite a comunicação entre a rede neural e o Dyna. Sua função é permitir a

comunicação entre as duas aplicações pré processando os dados no formato adequado e

controlar as condições de simulação.
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5 Dados para treinamento e simulação

5.1 Caracteŕısticas dos navios

Existem diversos navios com as mais diversas propriedades f́ısicas. Essas são es-

senciais de serem consideradas no simulador numérico a ser utilizado na validação, pois

são as propriedades que influenciam no desenvolvimento do sistema dinâmico segundo as

entradas selecionadas e as perturbações.

Para o presente projeto, baseado nos dados de simulações dos práticos, foram consi-

derados, principalmente, 2 modelos de navios: o Aframax e o Suezmax, cujas caracteŕısticas

f́ısicas são descritas na tabela 1 e as velocidades de seus propulsores são apresentados na

tabela 2. Ambos são navios-tanque, sendo o Aframax o maior na escala Average Freight

Rate Assessment (AFRA) e capacidade de carregamento entre 80 mil e 120 mil toneladas,

já o Suezmax é um navio petroleiro com capacidade de carregamento entre 140 e 175

mil toneladas, cujas dimensões são as máximas suportadas pelo canal de Suez, no Egito

(TRANSPETRO, 2018).

Tabela 1 – Caracteŕısticas dos navios Aframax e Suezmax (em metros)

Boca Pontal Comprimento Calado
Aframax 42.00 22.50 244.75 15.30
Suezmax 48.00 23.10 278.50 15.00

Fonte: Autores

Tabela 2 – Velocidades dos navios Aframax e Suezmax (em rpm)

0) Parado 1) Muito Devagar 2) Devagar 3) Meia Força 4) Toda Força
Aframax 0 19.20 38.40 57.60 76.80
Suezmax 0 28.77 32.88 57.54 65.76

Fonte: Autores

5.2 Canal de Suape

Todos os dados descritos na seção 5.4 foram simulados em um modelo do canal do

porto de Suape localizado no estado de Pernambuco, Brasil. Este complexo está interligado

a mais de 160 portos no mundo sendo o porto mais estratégico da região nordeste (SUAPE,

2018b). O porto apresenta uma área total organizada com mais de 3 mil hectares, porto
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interno com 1.6 quilômetros de cais e 5 berços. Na figura 9 é apresentado o canal de acesso

ao porto que possui as seguintes caracteŕısticas (SUAPE, 2018a):

• Extensão: 5 quilômetros;

• Largura: 300 metros;

• Profundidade: 16.5 metros.

Caracteŕısticas essas essenciais para verificar a capacidade de acesso de uma deter-

minada embarcação e referência tanto para o prático definir os comandos para a manobra

quanto para a rede neural obter os parâmetros de entrada.

Figura 9 – Canal de acesso do porto de Suape

Fonte: Eicomnor Engenharia

No modelo do canal para simulação, as referências para os cálculos são dadas pelas

boias ilustradas na próxima seção na figura 10, nestes a largura ao longo do canal é de

aproximadamente 200 metros com a abertura final de até 400 metros com aproximadamente

6 quilômetros de extensão.

5.3 Condições ambientais

Como descrito por (AHMED; HASEGAWA, 2013), na manobra de entrada no canal,

conforme a velocidade da embarcação é reduzida, as condições ambientais intensificam

seus efeitos sobre o navio afetando a sua controlabilidade, por isso a importância de sua

consideração e a dificuldade de realização da manobra.
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Existem basicamente três agentes ambientais que requerem atenção do prático: a

correnteza, as ondas e o vento, que exercem forças e momentos sobre o navio podendo

desviar da rota prevista. Os três estão implementados no simulador do TPN e serão

considerados para realizar a validação da solução obtida.

Entretanto, existem infinitas combinações posśıveis de intensidade, direção e sentido

desses três agentes, desta forma, para padronizar a validação foi selecionado um caso de

intensidade média dada na tabela 3.

Tabela 3 – Condições ambientais para validação sendo N direção norte e SE direção sudeste

Correnteza Vento Onda
Direção Intensidade Direção Intensidade Direção Peŕıodo Altura

N 0.5 nós SE 15.0 nós SE 8 s 1.0 m

Fonte: Autores

5.4 Dados de treinamento

A primeira etapa do projeto foi o desenvolvimento dos dados de treinamento. Esta

etapa visa processar os dados brutos que existem de simulações passadas realizadas por

práticos no TPN de forma que resultem em dados de qualidade no formato necessário.

Inicialmente, foi obtido uma coleção de 113 simulações. Entretanto, nem todas

eram válidas então foi necessário fazer uma análise individual dos v́ıdeos das simulações.

Na figura 10, denominado como caso 2 do Suape 2017, pode ser observado uma imagem

com todos os estados representados em um desses v́ıdeos, em cinza claro está o canal e em

cinza escuro estão os estados da embarcação com o tempo. Os pontos vermelhos e verdes

são as boias que definem as margens do canal. Por ser uma análise visual, foram adotados

critérios menos precisos que depois seriam refinados por meio de algoritmo:

• A embarcação deve estar realizando uma manobra de entrada, ou seja, do mar para

o berço;

• A embarcação deve permanecer dentro do canal durante toda a manobra.

Filtradas as simulações que satisfaçam essas condições, as mesmas foram processadas

para gerar os arquivos de treinamento. Na tabela 4 pode ser visto o registro do primeiro

segundo da simulação da figura 10, foram apresentadas apenas as colunas de interesse.

Desta tabela, pode-se obter o instante de tempo em segundos de cada estado (time stamp),
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Figura 10 – Conjunto dos estados representados no v́ıdeo da simulação do caso 2 do Suape
2017

Fonte: Orientador - TPN-USP

as coordenadas cartesianas em metro (x e y), o ângulo de aproamento em graus (zz ), as

velocidades locais em metros por segundo (vx e vy), a velocidade de guinada em graus

por segundo (vzz ), o comando de leme em radianos (rudder demanded orientation 0 ) e a

ordem de comando de máquina em rotações por minuto (propeller demanded rpm 0 ).

Na tabela 5 está representada a sáıda ao se utilizar o algoritmo de processamento

nos dados da tabela 4. De forma resumida, o algoritmo obtém os dados de simulação de

planilhas auxiliares para formar o cabeçalho com o nome do navio, o tipo de cenário, o tipo

de manobra executada e os dados de corrente, vento e onda. Posteriormente é realizado

o processamento das distâncias de interesse mensurados em metros e representados na

figura 11:

• Distância ao final do canal - ‘distance target ’ (δt): relevante para que se saiba qual o

comprimento de canal restante para redução de velocidade;

• Distância à linha de centro - ‘distance midline’ (δm): relevante para indicar o quanto a

embarcação está distante da linha imaginária central do canal fornecendo informações

para definir o comando de leme.
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aç

õe
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Figura 11 – Diagrama esquemático dos parâmetros da embarcação que serão utilizados
como entradas. As linhas ponto-tracejadas verde e vermelho representam as
linhas imaginárias que são definidas pelas boias (pontos circulares). A linha
tracejada cinza é a linha imaginária que liga as boias correspondentes para
determinação dos pontos médios amarelos que definem a linha imaginária
central também em amarelo.

Fonte: Autores

As coordenadas da boia e do ponto final do canal são obtidas manualmente para

cada porto. De posse dessas coordenadas e da embarcação, foi utilizado geometria anaĺıtica

para cálculo das distâncias (para o δt distância ponto a ponto do centro da embarcação até

o objetivo e para δm distância ponto a reta do centro da embarcação até a linha imaginária

central). A linha imaginária central é calculada com base nas boias, para cada par de boias

(verde e vermelho) correspondentes é obtido o ponto médio (amarelo) e a sequência desses

pontos definem a linha central, ressalta-se que esta é uma linha algébrica que não existe

na realidade sendo a mesma observação válida ao ponto amarelo.

Por fim, no arquivo original, a velocidade do propulsor é dado em rpm, mas no caso

de um prático, o comando é dado em ordem de máquina, ou seja, stop (parado), dead slow

(muito devagar), slow (devagar), half (meia força) e full (toda força) representado por

valores inteiros de 0 a 4, respectivamente. Para os valores positivos estão representadas

as ordens ahead (à vante) e em negativo as ordens astern (à ré). Na tabela 2 pode ser
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observada a conversão entre os valores para o Aframax e o Suezmax.

Portanto, por meio do cabeçalho gerado, parte dos dados originais e alguns

parâmetros calculados, são obtidos os dados processados que serão utilizados no trei-

namento. O último detalhe é filtrar para que apenas os dados úteis sejam apresentados no

arquivo de sáıda, isso é necessário, pois embora a simulação esteja boa para ser utilizada,

ela pode conter partes que não são de interesse, por exemplo, após a manobra de entrada

no canal pode existir uma manobra com rebocadores que fazem o atracamento efetivo,

manobra esta fora do escopo deste projeto.

De forma a exemplificar os resultados, a figura 12 consolida o resultado desse

processamento no caso 2 do Suape 2017. Nota-se que os resultados estão coerentes, as

aproximações e afastamentos da linha imaginária central ocorrem em sincronia com os

movimentos correspondentes da figura 10, a embarcação manobra em direção ao ponto

final (distância ao final do canal tende a zero), a velocidade de avanço é reduzida conforme

o requisito e as ordens de máquina estão discretizadas.

Para finalizar, um panorama geral sobre esse processo é que foram examinadas

113 simulações, mas apenas 45 foram aprovados para efetivamente serem utilizados no

treinamento da rede neural. Embora esse número aparente ser pequeno, vale notar que

cada arquivo possui dezenas de milhares de estados, desta forma, ao contabilizar todos os

estados que serão utilizados, a soma se aproxima de quase 650 mil.
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Figura 12 – Evolução dos estados na simulação do caso 2 do Suape 2017

Fonte: Autores
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6 Arquitetura da rede neural

De forma que a rede neural possa funcionar como esperado é necessário que ela

possua uma arquitetura definida.

O primeiro passo é realizar a escolha adequada dos parâmetros de entrada e de

sáıda. Como o objetivo da rede neural é o controle da embarcação, seu movimento é

definido por dois comandos básicos:

• Comando de leme (θ): define a direção da embarcação e é mensurado em radianos;

• Comando de máquina (ω): define a rotação do propulsor e é adimensional variando

de -4 a 4.

Para as entradas, foram escolhidos os parâmetros mais relevantes para a tomada de

decisão dos práticos:

• Distância ao final do canal - ‘target ’ (δt): mensurado em metros;

• Distância à linha imaginária central - ‘midline’ (δm): mensurado em metros;

• Velocidade local (vx, vy): mensurado em metros por segundo;

• Ângulo de aproamento (β): mensurado em graus;

• Velocidade de guinada (vβ): mensurado em graus por segundo.

O detalhamento para apurar esses valores estão descritos na seção 5.4. Conforme

o desenvolvimento da rede neural é posśıvel apurar sua performance e realizar ajustes.

Por exemplo, inicialmente a rede neural possúıa como entrada as distâncias às margens

definidas pelas boias a bombordo (δp) e a boreste (δs), mas os resultados não estavam

satisfatórios e foi realizada uma alteração para substituir as duas medidas por uma única

que é a distância à linha imaginária central como utilizada por (AHMED; HASEGAWA,

2013). Essa substituição é vantajosa porque simplifica os parâmetros que a rede neural

precisa averiguar para aderir e reduz a possibilidade das entradas não serem linearmente

independentes, pois as variáveis δp, δs e β podem possuir uma dependência. Considerando

tais variáveis, foram estabelecidas as seguintes relações entre elas:

θ = f(vx, vy, β, vβ, δm) (19)

ω = g(vx, vy, β, vβ, δm, δt) (20)
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Como explicado no caṕıtulo 3, existem diversas formas de estruturar a rede neural

(representação das funções f(·) e g(·)), a tarefa de definir os hiperparâmetros mais adequados

nem sempre possuem metodologias exatas e muitas vezes são definidos por meio de tentativa

e erro. No presente trabalho foram realizadas diversas alterações que eram validadas

conforme a metodologia apresentada no caṕıtulo 4.

As primeiras tentativas de rede neural foram as redes sem realimentação, que como

discutido em mais detalhes na seção 8.1, não apresentaram resultados satisfatórios. Por essa

razão, a solução por redes neurais recorrentes foi cogitada na expectativa de um melhor

aprendizado. Sua utilização poderia ser mais adequada devido à natureza do problema a

ser solucionado: os dados de treinamento são uma discretização no tempo, intervalos de

0.1 segundo, de uma sequência de estados da embarcação, portanto, uma abordagem que

possa compreender a existência de uma ordem entre os estados poderia ser mais eficiente.

Desta maneira, foram realizados testes com unidades de GRU (Gated Recurrent Unit) e

LSTM (Long Short-Term Memory). Diversas variantes foram testadas e o trabalho versará

sobre as que obtiveram os melhores resultados. Estas estão descritas na tabela 6 e com

resultados na seção 8.3.

Tabela 6 – Parâmetro das redes neurais recorrentes sendo MSE referente a equação 11

Taxa de Camadas Dropout Função de Função
Rede aprendizado (unidades) (%) ativação de custo

1 0.001 GRU(128)/GRU(128) 0 tanh MSE
2 0.001 Dense(128)/GRU(128) 20 sigmoid MSE
3 0.001 GRU(128)/LSTM(128) 0 sigmoid MSE
4 0.001 GRU(256)/GRU(128)/GRU(32) 10 sigmoid MSE

Fonte: Autores
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7 Validação

7.1 Módulo de integração

Como explicado no caṕıtulo 4, o teste e validação da rede neural pela metodologia

tradicional não é a mais adequada devido ao sistema controlado ser um sistema dinâmico.

Desta maneira, a abordagem escolhida para realizar os testes e, de fato, definir se a solução

está controlando a embarcação de forma adequada é o uso de simulação.

Para possibilitar agilidade no desenvolvimento do controlador e sua validação,

foi necessário elaborar um sistema que integrasse o treinamento da rede neural com o

processo de simulação, logo, o ciclo estaria automatizado permitindo que os autores não

necessitassem interferir manualmente entre uma tarefa e outra. Essa ferramenta é de

utilidade porque, dependendo da estrutura da rede neural, o seu treinamento demanda

tempo, desta maneira, automatizar o ciclo de validação permite executar todo o processo

de forma cont́ınua.

A estrutura básica para elaboração da integração pode ser observada no diagrama

de componentes da figura 13. O componente que este caṕıtulo aborda é o denominado

“Integração”. Sua função principal é ser uma interface de comunicação entre a rede neural

e o Dyna.

Figura 13 – Diagrama de componentes demonstrando a funcionalidade da interface de
integração entre a rede neural e o Dyna

Fonte: Autores

O Dyna é o integrador numérico desenvolvido no TPN que permite simular a

navegação das embarcações, as equações que regem os fenômenos que afetam a embarcação
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estão implementados para serem resolvidos numericamente. Existem diversas condições

que podem afetar a simulação, por exemplo, as caracteŕısticas f́ısicas da embarcação, o

relevo submarino da região, a direção e a intensidade do vento, a direção e a intensidade

da maré e muitos outros parâmetros. Para definição dessas influências, o integrador busca

no arquivo do tipo “P3D” os valores a serem considerados e envia para o Dyna construir

o ambiente de simulação.

Para fazer a manobra da embarcação, existem basicamente dois comandos que

podem ser enviados para o integrador: o comando de máquina e o comando de leme. A rede

neural desenvolvida busca simular de forma coerente com o que os práticos realizam, assim,

os comandos de máquina variam entre stop, dead slow, slow, half e full nas direções astern

e ahead enquanto o Dyna recebe o percentual da velocidade máxima das caracteŕısticas

da embarcação simulada. De maneira análoga funciona o comando de leme, a rede neural

define comandos em radianos e o Dyna recebe em percentual do máximo de leme. Portanto,

o módulo de integração também serve para realizar essa compatibilização de comunicação

entre os componentes.

Também faz parte deste módulo o cálculo de δm e δt que são parâmetros de entrada

da rede neural a serem enviados em conjunto com os dados do estado que são obtidos pelo

retorno do Dyna.

A partir da execução da simulação, o Dyna gera um arquivo como o da tabela 4

que poderá ser utilizado posteriormente para gerar os gráficos semelhantes ao da figura 12.

Para facilitar a visualização da simulação, uma plotagem dos estados é realizada em tempo

de execução para verificar sua trajetória como apresentado na figura 22. É importante

observar que a embarcação não está representada em escala e em formato preciso ao

modelo simulado, pois esta é apenas uma ferramenta de acompanhamento, a análise mais

precisa e correta deve ser realizada diretamente nos dados de sáıda da simulação.

Esse módulo foi desenvolvido sobre outro módulo pré-existente do aluno de mestrado

José Amendola Netto Andrade de quem são os direitos autorais do código. Por parte

dos autores foram realizadas apenas adaptações para considerar o modelo de rede neural

proposto.
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7.2 Condições iniciais

Um aspecto importante para realizar a simulação é a definição da condição inicial

do navio, ou seja, quais os valores dos parâmetros que definem o estado do navio no

momento de partida. Para tal, o Dyna requer os seguintes valores:

• Coordenada x global (x): mensurado em metros;

• Coordenada y global (y): mensurado em metros;

• Ângulo de aproamento (β): mensurado em graus;

• Velocidade de avanço (vx): mensurado em metros por segundo;

• Velocidade de deriva (vy): mensurado em metros por segundo;

• Velocidade de guinada (vβ): mensurado em graus por segundo.

Na seção 8.3 serão discutidos os resultados das simulações para diferentes condições

iniciais de forma a analisar a influência de cada parâmetro no desempenho da rede neural

para a execução da manobra.

A tabela 7 apresenta as condições referentes a influência do posicionamento inicial

mais próximo da margem bombordo (1), exatamente na linha média (2) ou mais próximo

da margem boreste (3) com resultados descritos na subseção 8.3.2.

Tabela 7 – Parâmetros do navio para as condições iniciais no teste de posicionamento

Condição inicial x (m) y (m) β (o) vx (m/s) vy (m/s) vβ (o/s)
1 11611.97 5404.08 -166.45 4.00 0.00 0.00
2 11601.97 5445.60 -166.45 4.00 0.00 0.00
3 11591.96 5487.15 -166.45 4.00 0.00 0.00

Fonte: Autores

A tabela 8 apresenta as condições referentes a influência do ângulo de aproamento

inicial direcionando a embarcação para a margem bombordo (4), alinhado ao canal (5) ou

para a margem boreste (6) com resultados descritos na subseção 8.3.3.

Tabela 8 – Parâmetros do navio para as condições iniciais no teste de ângulo de aproamento,
sendo que a condição 5 é a mesma que a condição 2 da tabela 7

Condição inicial x (m) y (m) β (o) vx (m/s) vy (m/s) vβ (o/s)
4 11601.97 5445.60 -151.45 4.00 0.00 0.00

5 (2) 11601.97 5445.60 -166.45 4.00 0.00 0.00
6 11601.97 5445.60 -181.45 4.00 0.00 0.00

Fonte: Autores
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A tabela 9 apresenta as condições referentes a influência da velocidade de guinada

inicial no sentido anti-horário (7), sem rotação (8) ou sentido horário (9) com resultados

descritos na subseção 8.3.4.

Tabela 9 – Parâmetros do navio para as condições iniciais no teste de velocidade de guinada,
sendo que a condição 8 é a mesma que a condição 2 da tabela 7

Condição inicial x (m) y (m) β (o) vx (m/s) vy (m/s) vβ (o/s)
7 11601.97 5445.60 -166.45 4.00 0.00 -0.11

8 (2) 11601.97 5445.60 -166.45 4.00 0.00 0.00
9 11601.97 5445.60 -166.45 4.00 0.00 0.11

Fonte: Autores
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8 Resultados

8.1 Resultados preliminares

Iniciou-se o processo de apuração pelas redes sem realimentação que não estavam

aderindo apropriadamente aos dados de treinamento, muitas vezes apresentando sáıdas

constantes ou com variação mı́nima como apresentado nas figuras 14 e 15 que simularam

os mesmos estados da figura 12.

Figura 14 – Comando de máquina uniforme obtido com a rede neural sem realimentação
no caso 2 do Suape 2017 demonstrando não estar controlando adequadamente

Fonte: Autores

Figura 15 – Comando de leme uniforme obtido com a rede neural sem realimentação no
caso 2 do Suape 2017 demonstrando não estar controlando adequadamente

Fonte: Autores

O modelo baseado em (AHMED; HASEGAWA, 2013), descrito no caṕıtulo 4,
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apresentou uma melhora nos resultados como pode ser observado nas figuras 16 e 17. É

posśıvel verificar uma maior oscilação em relação às figuras 14 e 15, mas ainda com baixa

amplitude sendo insuficiente para controle em situações que requerem comandos mais

abruptos.

Figura 16 – Comando de máquina com a rede neural de arquitetura baseada em (AHMED;
HASEGAWA, 2013) no caso 2 do Suape 2017

Fonte: Autores

Figura 17 – Comando de leme com a rede neural de arquitetura baseada em (AHMED;
HASEGAWA, 2013) no caso 2 do Suape 2017

Fonte: Autores

Desta maneira, foram requeridas duas etapas para contornar a não funcionalidade

destas primeiras tentativas: primeiramente uma análise mais criteriosa dos dados a fim

de verificar a viabilidade de sua utilização como descrito em detalhes na seção 8.2 e
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posteriormente a utilização de redes neurais recorrentes como solução final detalhado na

seção 8.3.

8.2 Análise de dados

Um aspecto importante em qualquer aprendizado de máquina é a qualidade dos

dados dispońıveis para uso, ou seja, o algoritmo desenvolvido pode apresentar um desem-

penho indesejado de acordo com a base de dados que foi utilizada para treinar o mesmo.

Nesse caso realizou-se a análise dos parâmetros de entrada com os de sáıda.

As figuras 18 e 19 apresentam a distribuição de cada parâmetro de entrada descrito

nas equações 19 e 20, respectivamente, para cada sáıda. De forma geral é dif́ıcil identificar

padrões nessas imagens embora a expectativa fosse de que elas existissem claramente. Por

exemplo, uma expectativa era de que no gráfico δm por θ fosse verificado uma concentração

maior em δm negativo com θ positivo e também em δm positivo com θ negativo, pois são

os comandos que direcionariam a embarcação para a linha de centro.

Entretanto, para realizar a manobra da embarcação é necessário considerar o

conjunto todo desses parâmetros e não individualmente. Por essa razão existe a dificuldade

em identificar os padrões, por exemplo, se vβ estiver ascendente rapidamente, para o

prático é mais importante reduzir essa taxa de aumento do que realizar o alinhamento da

embarcação na linha de centro, pois a embarcação pode se tornar muito instável. Esta é

uma das razões para a existência de pontos em todo o espaço de δm por θ, explicando a

quebra da expectativa apresentada.

No caso do comando de máquina, figura 19, o aparente padrão entre as variáveis

se deve ao fato da discretização dos valores do comando de máquina, assim, não existe o

preenchimento do espaço todo, o que torna a aparência menos caótica.

De maneira a realizar uma análise mais precisa, foi realizada uma verificação por

meio de correlação. Na tabela 10 está representada a correlação dos parâmetros com a

sáıda no caso 2 do Suape 2017 apresentado na seção 5.4. Pode-se observar que poucas

variáveis apresentaram um ı́ndice de correlação acima de 0.5 e nenhum acima de 0.7 que

seria um valor interessante para garantir um melhor aprendizado por parte da rede neural.

Conforme a base de dados é aumentada com os demais casos, tabela 11, é posśıvel perceber

que alguns parâmetros melhoram os resultados da correlação como vβ com ω enquanto
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Figura 18 – Plotagem dos parâmetros em relação ao comando de leme (θ)

Fonte: Autores
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Figura 19 – Plotagem dos parâmetros em relação ao comando de máquina (ω)

Fonte: Autores



57

outros pioram como β com θ.

A análise das correlações individuais e conjunta demonstra a irregularidade que

existe na base devido a complexidade em se realizar este tipo de manobra que pondera

diversos fatores simultaneamente. A maneira que a base foi gerada também influencia nos

resultados observados, ela foi produzida por práticos diferentes que possuem experiência e

técnicas de manobra diferentes, existem embarcações com propriedades f́ısicas distintas e

condições ambientais que variam entre os casos. Essa diversidade torna a base rica em

situações que auxiliam a obter uma rede neural mais genérica, entretanto aumenta a

complexidade para obter os padrões de controle e gera a aparência caótica das figuras 18 e

19.

Tabela 10 – Análise de correlação das variáveis para o caso 2 do Suape 2017

Variáveis Comando de leme Comando de máquina
vx -0,32 0,38
vy -0,29 0,36
β 0,54 -0,39
vβ 0,51 -0,01
δm 0,21 -0,01
δt - 0,59

Fonte: Autores

Tabela 11 – Análise de correlação das variáveis para a base inteira de dados

Variáveis Comando de leme Comando de máquina
vx -0,18 0,40
vy -0,25 0,04
β 0,05 -0,05
vβ 0,06 -0,10
δm 0,15 -0,11
δt - 0,48

Fonte: Autores

8.3 Resultados finais

8.3.1 Arquitetura e treinamento

Existem diversos parâmetros que podem ser definidos nas redes neurais para obter

resultados mais apropriados a cada situação. Portanto, definida a escolha da utilização

de redes neurais recorrentes, foram desenvolvidos diversos modelos pela alteração da

arquitetura e dos hiperparâmetros, alguns com resultados melhores e outros piores. Para
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a primeira filtragem foram realizadas análises mais simples como o uso do conjunto de

estados de simulações passadas não utilizadas no treinamento a fim de verificar o erro

entre os comandos registrados e os previstos pelo controlador, semelhante ao realizado na

seção 8.1.

De posse dos resultados, os melhores foram selecionadas para realização de algumas

simulações preliminares com o Dyna para averiguar se existe realmente um ind́ıcio de

que a rede resulta em comandos de controle coerentes. Desses, foram selecionados os 4

modelos que apresentaram os resultados mais satisfatórios (tabela 6) para serem utilizados

no processo de validação completo descrito no caṕıtulo 7.

Figura 20 – Valor da função de custo para modelos de rede neural de controle de leme
obtida no Tensorboard em função da quantidade de epoch

Fonte: Autores

Figura 21 – Valor da função de custo para modelos de rede neural de controle do comando
de máquina obtida no Tensorboard em função da quantidade de epoch

Fonte: Autores

O Tensorboard permite observar o desenvolvimento da rede neural durante a fase

de treinamento. Nas figuras 20 e 21 é posśıvel observar a variação da função de custo
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com o decorrer desta etapa nos controladores selecionados para comando de leme e de

máquina, respectivamente. Nota-se, portanto, que o processo de treinamento dos modelos

selecionados foi realizado com sucesso, uma vez que a função custo mede o erro da sáıda

prevista em relação aos valores originais de teste. Pelos gráficos, detecta-se que a função

custo é minimizada durante o processo de aprendizagem, ou seja, a rede passa a aderir

melhor aos dados conforme os epochs.

Verificado a adequação do processo de treinamento destes modelos, em seguida

foi realizado o processo de validação utilizando a interface de integração, figura 13, para

realizar a simulação via Dyna. Nas simulações, utilizou-se o modelo de navio Aframax,

tabelas 1 e 2, com os parâmetros de condições iniciais das tabelas 7, 8 e 9.

8.3.2 Variação de posicionamento

Como descrito na seção 7.2, foi realizado a simulação para os casos da tabela 7,

obtendo os resultados descritos na tabela 12. A figura 22 apresenta um caso de simulação

realizado com sucesso, ou seja, não há ocorência de colisões durante o trajeto. Os demais

resultados das simulações podem ser observados no apêndice A.

Tabela 12 – Resultados do teste de posicionamento 3: sem colisão 7: com colisão

Condição inicial Rede 1 Rede 2 Rede 3 Rede 4
1 3 7 3 3

2 3 7 7 3

3 3 7 7 3

Fonte: Autores

Figura 22 – Simulação do controle da embarcação através da rede 1 na condição 1

Fonte: Autores
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8.3.3 Variação de ângulo de aproamento

Como descrito na seção 7.2, foi realizado a simulação para os casos da tabela 8,

obtendo os resultados descritos na tabela 13. A figura 23 apresenta um caso de simulação

realizado com sucesso, ou seja, não há ocorência de colisões durante o trajeto. Os demais

resultados das simulações podem ser observados no apêndice A.

Tabela 13 – Resultados do teste de ângulo de aproamento 3: sem colisão 7: com colisão

Condição inicial Rede 1 Rede 2 Rede 3 Rede 4
4 3 7 3 3

5 (2) 3 7 7 3

6 7 7 7 7

Fonte: Autores

Figura 23 – Simulação do controle da embarcação através da rede 1 na condição 4

Fonte: Autores

8.3.4 Variação de velocidade de guinada

Como descrito na seção 7.2, foi realizado a simulação para os casos da tabela 9,

obtendo os resultados descritos na tabela 14. A figura 24 apresenta um caso de simulação

realizado com sucesso, ou seja, não há ocorência de colisões durante o trajeto. Os demais

resultados das simulações podem ser observados no apêndice A.
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Tabela 14 – Resultados do teste de velocidade de guinada 3: sem colisão 7: com colisão

Condição inicial Rede 1 Rede 2 Rede 3 Rede 4
7 3 3 7 3

8 (2) 3 7 7 3

9 3 7 7 3

Fonte: Autores

Figura 24 – Simulação do controle da embarcação através da rede 1 na condição 7

Fonte: Autores
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9 Discussão

9.1 Análise de desempenho

A partir dos resultados das simulações obtidas, tabelas 12, 13 e 14, podemos avaliar

o desempenho das redes neurais durante as 7 simulações de acordo com o requisito primário

que é a condução do navio até o final do canal sem colisão. Vale notar que no teste 6,

tabela 13, nenhuma rede conseguiu controlar a embarcação até o final, tais resultados

podem ser justificados pela instabilidade do navio ser amplificada devido às condições

iniciais nessa simulação, impossibilitando o controle pela rede neural.

Em uma primeira análise é posśıvel identificar um padrão de comportamento em

três regiões distintas do canal, como pode ser observado nas figuras 22, 23 e 24:

• Acima de 5 km distante do final do canal (região 1 ): no ińıcio a rede procura se

estabilizar da condição inicial aproximando e alinhando ao máximo posśıvel da linha

central;

• Entre 5 km e 2 km distante do final do canal (região 2 ): nesse intervalo a rede busca

se manter a um valor constante de distância da linha central conforme a aproximação

que ela conseguiu no trecho anterior;

• Abaixo de 2 km distante do final do canal (região 3 ): a rede inicia uma manobra de

entrada no trecho final do canal, que possui um aumento de largura, portanto, não é

mais necessário manter o navio tão próximo da linha central. O objetivo principal

se torna reduzir a velocidade para conseguir atracar com segurança e preparar a

embarcação para a próxima manobra.

Por exemplo, utilizando a rede 1 na condição inicial 4 podem ser apresentados

alguns gráficos de interesse como o da figura 25. As linhas verticais delimitam as regiões

citadas anteriormente para facilitar a análise e podem ser verificadas no gráfico da distância

ao final do canal. Para observar o alinhamento da embarcação, o parâmetro mais relevante

é o course over ground (COG) local, ou seja, o ângulo do vetor velocidade resultante, sendo

seu módulo denominado speed over ground (SOG), em relação a direção do canal, pois

isso é o que garante a trajetória alinhada. Os padrões anteriores podem ser observados:

• Região 1 : a embarcação se afasta inicialmente da linha central devido a condição

inicial, mas procura se aproximar logo em seguida. O COG local apresenta um desvio
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inicial que é corrigido tendendo a zero realizando o alinhamento;

• Região 2 : a distância a linha central se mantém mais estável em aproximadamente

40 metros bombordo e o mesmo ocorre ao COG local próximo de 0 demonstrando o

alinhamento;

• Região 3 : ocorre o desalinhamento do COG local, uma explicação pode ser o fato

de estar realizando uma manobra parecida com o da figura 10 em que é necessário

realizar uma curva para entrada no berço voltado a bombordo. O SOG é reduzido

para garantir a baixa velocidade dentro dos requisitos.

Figura 25 – Parâmetros de distância ao final do canal, da linha central, couse over ground
local e speed over ground da simulação de controle da embarcação através da
rede 1 na condição 4 onde o navio começa a simulação com um ângulo de
aproamento não alinhado ao canal

Fonte: Autores

Em seguida, analisa-se o desempenho das redes nas simulações realizadas. Primei-

ramente, filtra-se os resultados entre a ocorrência ou não de colisão durante o trajeto.

Segundo os dados da tabela 15, é posśıvel observar que as redes 1 e 4 apresentaram um

desempenho satisfatório ao passo que cada uma conseguiu conduzir a embarcação sem
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colisão em 6 das 7 simulações realizadas. A partir desses resultados, a análise dos requisitos

pode ser focada nos casos de sucesso.

Tabela 15 – Resultados gerais das simulações

Rede 1 Rede 2 Rede 3 Rede 4
Sucesso 6 1 2 6

% sucesso 86% 14% 28% 86%

Fonte: Autores

9.2 Análise de requisitos

Pelos dados das simulações e segundo os requisitos da tabela 16 foram elaborados

os gráficos das figuras 26, 27, 28 e 29 para a simulação das redes 1 e 4 na condição inicial

1. As informações para os demais casos podem ser observados no apêndice A.

Para avaliação do primeiro requisito, as figuras 26 e 28 apresentam uma região

vermelha indicando um limite inferior de distância em relação à margem, 21 metros segundo

a boca do Aframax, que não deve ser ultrapassado devido a iminência de uma colisão com

a delimitação do canal.

Enquanto as figuras 27 e 29 avaliam o segundo requisito apresentando uma região

verde que determina a velocidade final que deve ser atingida pelo navio ao término da

manobra para possibilitar seu atracamento em segurança.

Tabela 16 – Requisitos de projeto baseado na seção 1.2 e nas caracteŕısticas do Aframax
da tabela 1

Distância mı́nima Velocidade máxima
às margens ao final do canal

21 m 5.0 nós (2.5 m/s)

Fonte: Autores
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Figura 26 – Gráfico das distâncias às margens durante a simulação da rede 1 na condição
inicial 1. A linha vermelha representa o requisito de distância mı́nima (21 m)

Fonte: Autores

Figura 27 – Gráfico de velocidade durante a simulação da rede 1 na condição inicial 1. A
linha verde representa o limite máximo da velocidade no final do canal (2.5
m/s)

Fonte: Autores

Figura 28 – Gráfico das distâncias às margens durante a simulação da rede 4 na condição
inicial 1. A linha vermelha representa o requisito de distância mı́nima (21 m)

Fonte: Autores
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Figura 29 – Gráfico de velocidade durante a simulação da rede 4 na condição inicial 1. A
linha verde representa o limite máximo da velocidade no final do canal (2.5
m/s)

Fonte: Autores

Da análise destas figuras e outras apresentadas no apêndice A, podem ser elaboradas

as tabelas de consolidação dos resultados 17 e 18 que apresentam a adequação das redes

neurais 1 e 4, respectivamente, aos requisitos de projeto.

Tabela 17 – Desempenho da rede 1 de acordo com os requisitos de distância às margens e
velocidade

Rede 1 Requisitos
Cond. Inicial Distância Velocidade Final

1 3 3 3

2 3 3 3

3 3 3 3

4 3 3 3

7 3 3 3

9 3 3 3

Fonte: Autores

Tabela 18 – Desempenho da rede 4 de acordo com os requisitos de distância às margens e
velocidade

Rede 4 Requisitos
Cond. Inicial Distância Velocidade Final

1 3 7 7

2 3 3 3

3 3 3 3

4 3 7 7

7 3 3 3

9 3 3 3

Fonte: Autores
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Apesar de ambas as redes conseguirem conduzir a embarcação até o final do canal

sem colisão, analisando os desempenhos das mesmas perante os requisitos, nota-se que

a rede 1 atende aos requisitos em todas as simulações, enquanto a rede 4 não atende o

requisito de velocidade máxima ao final do canal em duas condições iniciais (1 e 4), ou

seja, a embarcação chega no final do canal com velocidade acima de 5.0 nós (2.5 m/s).

Para exemplificar tal diferença, pode-se ver pelas figuras 27 e 29 que no final do percurso

a rede 1 consegue entrar na área verde que significa que a mesma atende o requisito de

velocidade, enquanto a rede 4 fica acima da mesma área. Quanto ao requisito de distâncias

às margens, ambas as redes conseguem manter a embarcação dentro da região proposta

pelo requisito (figuras 26 e 28). Com essas informações dispońıveis, é posśıvel afirmar

que a rede neural 1 é a que apresenta os melhores resultados considerando os requisitos

estabelecidos.

9.3 Próximos passos

Para uma aplicação real de um controlador de embarcação qualquer, não apenas

por meio de redes neurais, é muito importante que ela possa ser utilizada em situações

genéricas, seja em canais com estruturas diferentes ou mesmo condições ambientais mais

severas. Desta maneira, listamos a seguir algumas tarefas que podem ser realizadas para

melhorar a performance e ampliar o escopo de aplicação da solução obtida:

• Generalização do controlador: ampliar a base de dados para simulações de outros

portos e considerar a condição ambiental e os parâmetros f́ısicos da embarcação como

parâmetros de entrada;

• Melhoria de performance: utilizar outros modelos de arquitetura, hiperparâmetros e

metodologias para definir a rede neural;

• Integração completa com os simuladores do TPN: isso permitiria mais ferramentas de

avaliação como a interface gráfica de visão 360o, sugestões de comandos aos práticos

e aprendizado cont́ınuo toda vez que fosse realizada uma simulação.
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10 Conclusão

Nesse trabalho foi posśıvel aprender sobre o desenvolvimento de redes neurais e as

peculiaridades envolvidas para garantir uma boa performance, por exemplo, a importância

de realizar um tratamento e uma análise prévia da base de dados a fim de garantir sua

qualidade e, consequentemente, uma boa aderência.

O processo de definição da melhor arquitetura e dos melhores hiperparâmetros

depende muito da experiência e do conhecimento técnico do projetista, mas também da

realização de testes e validações devido ao caráter iterativo de seu desenvolvimento. Para

o problema proposto de navegação em um canal de acesso, os dados de treinamento são

sequências temporais, e os melhores resultados foram obtidos por meio do uso de redes

neurais recorrentes, fato este explicado devido ao modelo possuir uma memória que guarda

a relação entre os estados.

O trabalho também abordou um processo de validação pelo uso de simulação

por meio do integrador numérico Dyna que inclui a implementação de diversos fatores

que influenciam a manobrabilidade da embarcação e torna a solução obtida muito mais

compat́ıvel com a realidade.

Em suma, os resultados obtidos neste trabalho demonstram que as redes neurais

recorrentes são soluções interessantes para automatizar o processo de condução de um

navio em um canal de acesso ao apresentar diversas simulações sem colisão e, inclusive,

dentro dos requisitos propostos. Entretanto, ainda são necessários trabalhos futuros de

melhoria para que possam ser generalizadas e aplicáveis em embarcações reais.
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Apêndice A – Resultados dos testes

Neste apêndice serão apresentados os resultados obtidos nos modelos das redes

neurais recorrentes da tabela 6 para as condições iniciais das tabelas 7, 8 e 9. Foi com base

nestes resultados que as observações da seção 8.3 foram elaboradas.

Em cada simulação serão apresentados 2 conjuntos de dados: a trajetória da

embarcação no canal (superior esquerdo) e os parâmetros para avaliação dos requisitos.

Esses parâmetro são compostos pelo o módulo da velocidade da embarcação também

denominado speed over ground (superior direito) e as distâncias da embarcação às margens

bombordo e boreste (inferior esquerdo e direito, respectivamente).

Vale ressaltar algumas observações importantes. Primeiramente, na imagem da

trajetória, a embarcação não está na mesma escala e com o mesmo formato que o seu

modelo real, pois esta figura serve apenas para acompanhar seu percurso no canal durante

a simulação.

Portanto, a avaliação mais criteriosa dos resultados deve ser realizada nos parâmetros

apresentados. No gráfico do speed over ground, a região verde representa o valor aceitável

ao final da manobra. Nos gráficos das distâncias, a região vermelha representa um valor que

nunca deve ocorrer durante a simulação, pois, caso seja ultrapassado, a embarcação estaria

na iminência de uma sáıda do canal. A forma como esses valores foram definidos está

descrito em mais detalhes na seção 1.2. Finalmente, as linhas verticais, quando presentes,

indicam o valor de δt, em preto o valor de 5 quilômetros e em cinza de 2 quilômetros, isso

é útil para identificar em qual trecho do canal o navio estava em cada instante de tempo,

auxiliando na análise da manobra.



73

A.1 Rede 1

Figura 30 – Manobra realizada pela rede 1 na condição inicial 1

Fonte: Autores

Figura 31 – Manobra realizada pela rede 1 na condição inicial 2

Fonte: Autores
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Figura 32 – Manobra realizada pela rede 1 na condição inicial 3

Fonte: Autores

Figura 33 – Manobra realizada pela rede 1 na condição inicial 4

Fonte: Autores
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Figura 34 – Manobra realizada pela rede 1 na condição inicial 6

Fonte: Autores

Figura 35 – Manobra realizada pela rede 1 na condição inicial 7

Fonte: Autores
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Figura 36 – Manobra realizada pela rede 1 na condição inicial 9

Fonte: Autores

A.2 Rede 2

Figura 37 – Manobra realizada pela rede 2 na condição inicial 1

Fonte: Autores
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Figura 38 – Manobra realizada pela rede 2 na condição inicial 2

Fonte: Autores

Figura 39 – Manobra realizada pela rede 2 na condição inicial 3

Fonte: Autores
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Figura 40 – Manobra realizada pela rede 2 na condição inicial 4

Fonte: Autores

Figura 41 – Manobra realizada pela rede 2 na condição inicial 6

Fonte: Autores
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Figura 42 – Manobra realizada pela rede 2 na condição inicial 7

Fonte: Autores

Figura 43 – Manobra realizada pela rede 2 na condição inicial 9

Fonte: Autores
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A.3 Rede 3

Figura 44 – Manobra realizada pela rede 3 na condição inicial 1

Fonte: Autores

Figura 45 – Manobra realizada pela rede 3 na condição inicial 2

Fonte: Autores
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Figura 46 – Manobra realizada pela rede 3 na condição inicial 3

Fonte: Autores

Figura 47 – Manobra realizada pela rede 3 na condição inicial 4

Fonte: Autores
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Figura 48 – Manobra realizada pela rede 3 na condição inicial 6

Fonte: Autores

Figura 49 – Manobra realizada pela rede 3 na condição inicial 7

Fonte: Autores
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Figura 50 – Manobra realizada pela rede 3 na condição inicial 9

Fonte: Autores

A.4 Rede 4

Figura 51 – Manobra realizada pela rede 4 na condição inicial 1

Fonte: Autores
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Figura 52 – Manobra realizada pela rede 4 na condição inicial 2

Fonte: Autores

Figura 53 – Manobra realizada pela rede 4 na condição inicial 3

Fonte: Autores
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Figura 54 – Manobra realizada pela rede 4 na condição inicial 4

Fonte: Autores

Figura 55 – Manobra realizada pela rede 4 na condição inicial 6

Fonte: Autores
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Figura 56 – Manobra realizada pela rede 4 na condição inicial 7

Fonte: Autores

Figura 57 – Manobra realizada pela rede 4 na condição inicial 9

Fonte: Autores
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