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Resumo

O presente trabalho visa abordar o complexo problema de controle de embarcacgoes
maritimas que adentram um porto por meio de um canal de acesso. Devido a essa
complexidade, profissionais conhecidos como praticos realizam as manobras para garantir
agilidade e seguranca com a tarefa de conduzir a embarcacao dentro dos limites do canal
e reduzir sua velocidade até o final do mesmo permitindo atracar no porto. De forma a
usufruir da experiéncia desses profissionais e simular a sua tomada de decisoes de comandos,
optou-se pela utilizacao de redes neurais como forma de controle, pois esta técnica requer
o treinamento de uma arquitetura de rede que adere aos dados de referéncia, no caso,
a sequéncia de comandos de simulagoes realizadas por praticos. A primeira etapa do
projeto foi a elaboragao desses dados de forma a garantir a sua qualidade e adequacao
aos parametros de entrada e de saida planejados. A segunda etapa foi o ciclo iterativo de
definicao e ajuste da arquitetura por meio do treinamento e avaliacao de performance. A
terceira e tltima etapa foi criar uma interface para validacao por simulagao e possibilitar
a interacao da rede neural com o integrador numérico de forma autonoma. Como forma
de desenvolver a rede foi utilizado a linguagem de programacao Python associado ao
framework chamado TensorFlow. Desta maneira, o documento discorre sobre as fases de
elaboracao e a possibilidade de flexibilizar a automacao de embarcacoes pela utilizacao
de rede neurais para um mais amplo conjunto de condigoes, o que podera aproximar
a tecnologia atual para condi¢oes mais realistas, garantir maior segurancga ao reduzir a

interferéncia humana e otimizar o tempo de espera e de entrada nos portos.

Palavras-chaves: Redes neurais. Simulacao. Navios.



Abstract

This work aims to tackle the complex task of ship handling which berth in a port through
an access channel. Due to this complexity, professionals known as maritime pilots perform
those maneuvers to ensure agility and safety while travelling through the channel’s limits
and reducing its speed until the end allowing it to berth in the port. In order to benefit
from the experience of those professionals and simulate their command decision making, it
was opted for the application of neural networks as means of control, since this technique
requires the training of a network architecture which will adhere to the reference data,
in this case, the command sequence from simulations performed by maritime pilots. The
first stage of the project consisted of preparing these data in order to guarantee its quality
and suitability to the intended input and output parameters. The next stage was the
interactive cycle of definition and adjustment of the architecture through training and
performance evaluation. The last stage was the development an interface for validation
through simulation and enable an autonomous interaction between the neural network
and the numerical integrator. As means of development of the network the programming
language Python combined with the framework called TensorFlow was used. Thus, this
document discusses the development stages and the possibility of easing the automation
of vessels using neural networks for a wider set of conditions, which may bring closer the
current technology to more realistic conditions, ensure more safety as human interference

is lessen and optimize the waiting time and berthing at ports.

Key-words: Neural networks. Simulation. Vessel.
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1 Introducgao

1.1 Descricao do tema e motivacao

O tema do projeto é a utilizacao de redes neurais como uma forma de controle para
navegacao de embarcagoes maritimas. A proposta surgiu da complexa tarefa de realizar a
manobra de navios nos portos. Quando os navios estao proximos ao seu destino, é necessario
o auxilio de profissionais especializados que possuem os conhecimentos especificos daquela
regiao (relevo submarino, condi¢oes do mar e outros), garantindo a seguranga e a correta
realizacao da operacao. Os especialistas que comandam essa manobra de dentro do navio e
ao lado do capitao sao conhecidos como praticos. Eles possuem o suporte de embarcagoes
menores, mas de alta poténcia, conhecidos como rebocadores que seguem os comandos do
pratico para posicionar e movimentar o navio.

Entre as diversas manobras realizadas pelo pratico esta a navegagao do navio em
meio ao canal de acesso. Esta operacao tem como objetivo realizar a conducao do navio
em média velocidade por um canal estreito e em geral dragado que direciona o mesmo
até o porto, no qual ele devera estar em uma baixa velocidade para que os rebocadores
possam realizar o posicionamento final até o berco. Existem varios fatores que tornam
sua execucao complexa, um dos principais fatores é a reducao de velocidade que amplifica
a dominancia dos efeitos ambientais sobre o navio dificultando o seu controle, portanto,
solugdes de controle automatico de trajetdria sao temas de pesquisa. Os controles baseados
em modelagem podem ser custosos de serem desenvolvidos além de ter eficiéncia apenas em
casos muito especificos. Por exemplo, na utilizagao de linearizacao, ao simplificar o modelo,
além de reduzir os detalhes de seus efeitos, existe a necessidade de trabalho em torno das
condicoes definidas, o que, consequentemente, inviabiliza sua utilizacao em situagoes reais.

Como os praticos possuem muita experiéncia na execugao desta manobra, o projeto
visa criar um controlador que possa se beneficiar de seu conhecimento e intuicao para
contornar esses impedimentos. Portanto, a utilizagao de redes neurais se mostra interessante,
pois esta permite conceber uma solucao que se adapta e simula os dados de treinamento,
logo, podera ser utilizado uma sequéncia temporal de estados e comandos em manobras
similares realizadas por esses profissionais servindo de insumo para o aprendizado da rede.

De forma a validar o controlador desenvolvido, foram realizadas simulagoes com o

integrador numérico do TPN (Tanque de Provas Numérico) a partir de um maédulo de
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conexao que permite o envio das condigoes de estado do simulador para a rede neural e,
em resposta, as ordens de comando adequadas para a manobra no sentido oposto, assim,
demonstrando se o0 mesmo esta apto a manobrar uma embarcacao como os praticos que
geraram os dados de treinamento.

Portanto, a rede neural fornece uma forma alternativa de lidar com as complexidades
envolvidas, permitindo o desenvolvimento futuro de sistemas de controle autonomo de
navegacao em areas abrigadas. Isso pode ter diversas implicagoes, como o melhor controle
da velocidade de avanco pelo controle do propulsor permitindo embarcacoes de maior
porte em portos de canais de acesso mais curtos, otimizacao de tempo para realizacao da
manobra reduzindo as filas para entrada no porto e aumento da seguranca ao reduzir a

influéncia do ser humano.

1.2 Objetivos e requisitos

Sumariamente, o projeto tem como objetivo elaborar uma rede neural treinada
com base na experiéncia de praticos reais, pois isso permite simular a complexa sequéncia
de decisoes que sao baseadas na experiéncia deles.

Uma manobra de entrada no canal é definida ter sido realizada com sucesso quando
a embarcacao permanece dentro dos limites por toda a sua extensao e atinge o seu final
com velocidade baixa o suficiente para que a manobra seguinte de atracagao nao apresente
riscos as pessoas, ao porto e as outras embarcacoes. De forma mais precisa, podem ser

definidos os seguintes requisitos que validam a manobra:

e Distancia minima das margens: 0.5 boca em relacao a cada margem, sendo a boca
maxima o termo que se refere a maior largura da secao transversal da embarcacao;

e Velocidade maxima ao final do canal: 5.0 nds (2.5 m/s).

Para que o controle seja viavel, a rede neural também deve conseguir ler e interpretar
as entradas, por exemplo, a distancia com a linha de centro do canal, para assim decidir
quais os comandos de leme (dire¢ao) e de méquina (rotagado do propulsor) adequados para
cumprir o objetivo sendo sua validacao final realizada ao simular sua performance com o
integrador numérico do TPN.

Como extensoes do projeto, ou seja, além do objetivo primario, é de interesse

generalizar o maximo possivel, desta maneira, seriam realizadas novas implementacoes
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e otimizacgoes para cumprir condicoes extremas que atingiriam os limites dos requisitos
supracitados, por exemplo, condi¢oes ambientais mais intensas que os presentes nos dados
de treinamento, canais de acesso mais curtos para embarcagoes de mesmo porte, canais
de mesma extensao para embarcagoes de maior porte e outros testes. Essa extensao seria
relevante pois tornaria a rede neural mais consistente e segura além de permitir averiguar
critérios e normas de seguranca ou mesmo realizar o planejamento de canais para novos

projetos de portos.

1.3  Organizacdo do texto

O presente trabalho estéd elaborado de forma a compreender as pesquisas e as etapas
realizadas no desenvolvimento do projeto de forma que facilite o embasamento do leitor
na tematica do trabalho e permita compreender as decisoes dos autores até os resultados
obtidos.

No capitulo 2 é apresentado o estado da arte demonstrando o desenvolvimento da
area de automacao por diversas frentes até as abordagens das metodologias utilizadas
nesse projeto e pesquisas semelhantes que enfatizam a relevancia na utilizagao de redes
neurais na area de manobra de embarcagoes em canais de acesso.

No capitulo 3 é abordado o contetiido tedrico para se compreender o funcionamento
de uma rede neural, desde formas de aprendizado e sua composicao até os processos de
propagacao e retropropagagao que sao os algoritmos base para gerar o resultado e adequar
0s pesos e vieses da rede neural, respectivamente. Também sao introduzidos alguns modelos
de redes neurais recorrentes utilizados no projeto.

No capitulo 4 é apresentado a forma em que o problema sera resolvido, ou seja, sao
ressaltadas as técnicas implementadas e quais as ferramentas auxiliares que sao utilizadas
em cada etapa.

No capitulo 5 sao abordados os conceitos e propriedades fundamentais que in-
fluenciam na simulacao da embarcacao e a forma como foram processados os dados de
treinamento a partir do banco de simulagoes realizadas por praticos no TPN. No processa-
mento, as etapas sao descritas por meio de um exemplo para tornar a explicagao mais
didético e realista.

No capitulo 6 é apresentado a elaboracao da rede neural focando na arquitetura da
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mesma e relacionando como o embasamento tedrico do capitulo 3 foi utilizado no projeto.

No capitulo 7 é abordado o processo de elaboragao da validagao da rede neural por
meio de uma integracao entre a solucao desenvolvida e o integrador numérico que permite
simular as condi¢oes de navegacao.

No capitulo 8 sao apresentados os resultados obtidos com as redes neurais desenvol-
vidas durante este projeto por meio da descricao das etapas e dificuldades verificadas no
decorrer do trabalho.

No capitulo 9 é feita uma andlise dos resultados obtidos com as possiveis explicacoes
do comportamento observado e verificacao dos requisitos levantados. Por fim, sao feitas
sugestoes de projetos para continuidades da pesquisa.

No capitulo 10 o trabalho ¢ finalizado ao citar as conclusoes obtidas.
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2 Estado da arte

O desenvolvimento da engenharia sempre esteve muito relacionado aos problemas
da humanidade. Em cada periodo, novas tecnologias permitiram o avanco do conhecimento
cientifico e trouxeram beneficios a sociedade. Embora muitos temas sejam estudados
em paralelo nas grandes universidades, alguns ganham um destaque maior, seja por se
acreditar que o futuro caminha nessa direcao ou apenas por questoes midiaticas tornando
a linha de conhecimento mais “popular”. Nos dias de hoje muito se fala de automacao, seja
de fabricas, processos, robos e outros, mas especialmente para o contexto desse trabalho:
veiculos de transporte. Por anos os carros autonomos foram um sonho da humanidade,
hoje hé grandes avangos nessa frente, por exemplo, (PADEN et al., 2016) demonstram
como o problema dos carros autonomos na verdade é uma série de subproblemas que
podem ser resolvidos por diversas técnicas em conjunto, por exemplo, o primeiro problema
¢é a definicao da rota para atingir um determinado destino, essa necessidade é resolvida
na camada de “roteamento” em que seu resultado serve como entrada para a camada
“comportamental” que define como interagir com os outros veiculos e assim por diante até
se obter um veiculo completamente autonomo; (ALTHOFF; MERGEL, 2011) realizam
o estudo da adequacao de técnicas de probabilidade, cadeia de Markov e Monte Carlo,
para avaliacao de segurancga em carros autonomos, mais especificamente nos casos de
obstaculos na trajetdria e riscos de colisao; entretanto, nao apenas de tecnologia e métodos
matematicos essa area é composta, questoes éticas também sao envolvidas como consta no
artigo de (LIN, 2016) em que cita diversas situac¢oes para reflexdo sobre como os carros
autonomos devem reagir.

As tecnologias de automacao sao mais populares nos veiculos terrestres devido a
proximidade com o dia a dia das pessoas, mas isso nao significa que essas inovagoes estao
restritas a este ambito. Pelo contrario, o desenvolvimento ocorre em outros meios, por
exemplo, veiculos maritimos. Embora as condigoes de controle sejam muito diferentes nos
dois casos, por exemplo, as inércias envolvidas, o meio em que o veiculo esta imerso, as
normas regulamentativas para seguranca e outros, muitas técnicas podem ser reaproveitadas
e inclusive algumas motivagoes sao compartilhadas. Nos dois casos, o risco de colisao é
um problema vital, a automagao pode ser um caminho promissor para solucionar ou, pelo

menos, minimizar isso, ja que 75% a 96% dos acidentes possui influéncia de erro humano
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segundo (PERERA; CARVALHO; SOARES, 2009).

No ambito naval, o risco de colisdes ganhou muita importancia devido a crescente
frota de navios. Uma forma de evitar essas fatalidades é a regulamentacao da navegagao.
A IMO (International Maritime Organization) elaborou um conjunto de normatizagoes
conhecidos como COLREGS (Collision Regulations) que determina situagdes e manobras
a serem realizadas para evitar colisbes. (BELCHER, 2002) realiza um estudo sobre as
COLREGS em que conclui que uma regulamentagao nao é suficiente para evitar riscos,
seja pela questao subjetiva ja que depende da interpretacao momentanea de quem esta a
bordo, mas seja também pela impossibilidade de registrar e normatizar todas as situagoes
adversas possiveis.

Assim, as solugoes tecnoldgicas de auxilio a tripulacao se tornam ferramentas
cruciais que reduzem a subjetividade do homem na observacao das condi¢oes momentaneas
para a tomada de decisoes. (STATHEROS; HOWELLS; MAIER, 2008) citam algumas
tecnologias de navegacao entre elas o GPS (Global Positioning System), o Radar, o ARPA
(Automatic Radar Plotting Aid) e instrumentos de monitoracao das condigbes atmosféricas
e da dgua. Esses instrumentos apenas fornecem dados mais precisos e objetivos a tripulagao,
por isso nao sao suficientes para evitar colisao, ja que a interpretacao e tomada de decisao
ainda depende do homem. Tecnologias auxiliares que realizam parte da interpretacao
desses dados sao muito 1teis, por exemplo, (SATO; ISHII, 1998) desenvolveram uma,
analise utilizando imagens por infravermelho para prever rotas de outros navios por meio
de informagoes adicionais ao Radar como tamanho, tipo e alteragoes aparentes no aspecto
da embarcacao, dados esses que seriam identificados pela tripulacao estando sujeitos a
subjetividade.

De forma a restringir a influéncia humana na interpretacao e decisao das acoes,
uma solucao adicional seria a elaboracao de pilotos automaticos. Assim, é necessario a
existéncia de uma malha de controle que recebe os dados dos instrumentos anteriormente
citados, interpreta a situagao atual e define os comandos adequados para atingir um dado
objetivo. (FOSSEN, 2000) realiza um estudo do desenvolvimento da teoria de controle
nao linear baseado em modelos para sistemas maritimos que permitiu obter sistemas de
equilibrio dinamico, seguidores de trajetdria e controle de sistemas subatuados por meio de
diversas tecnologias desde controladores PID (proportional-integral-derivative) até pilotos
automaticos mais avangados com uso de LQG (Linear—quadratic—-Gaussian) e controle por

Ho. Uma das grandes dificuldades ao se utilizar esses controladores ¢ a consideragao das
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nao linearidades envolvidas que perturbam o sistema como as condi¢oes ambientais, nesse
sentido, (TANNURI et al., 2010) utilizam uma técnica alternativa baseada em controle
nao linear robusto por modos deslizantes, apresentando robustez e facilidade de ajuste.

Nao restrito a apenas aplicacoes maritimas, desenvolvimentos de tecnologias de
outras areas também podem ser reaproveitadas. Além dos carros autonomos, uma se-
gunda drea muito influente atualmente e correlata a primeira é a da inteligéncia artificial.
(MAKRIDAKIS, 2017) aborda o desenvolvimento desse campo como uma nova revolucao
assim como foi a revolucao industrial e a revolucao digital impactando a sociedade toda.
Um exemplo que demonstra a influéncia nos dias de hoje é o fato da Google em 2012 ter
apenas 2 projetos de deep learning enquanto em 2017 mais de 1000 projetos estavam em
andamento. A aplicabilidade desses conceitos é muito ampla, por exemplo: em neurociéncia
e visdo computacional, (KRUTHIVENTI; AYUSH; BABU, 2017) utilizam redes neurais
convolucionais para identificar o padrao atuante no mecanismo de atencao visual do ser
humano; em andlise de histéricos financeiros, (WAN; SI, 2017) utilizam ANFIS (adaptive
neuro fuzzy inference system) que define padrdes e tendéncias da flutuagao dos dados;
em medicina, (BEHESHTI; DEMIREL; MATSUDA, 2017) utilizam algoritmos genéticos
para analise de imagens de ressonancia magnética para identificacao de tendéncias de
Alzheimer; em geotecnia, (SHAHIN, 2016) explora a area por diversas técnicas (redes
neurais, algoritmos genéticos e regressao polinomial evolutiva), segundo o autor existem
problemas muito complexos e nao muito bem compreendidos nessa area o que torna os
modelos imprecisos ou muito simplificados, sendo a inteligéncia artificial uma alternativa
pois esta aprende baseada nos dados reais e completos podendo ser refinado por novos
treinamentos.

Da mesma maneira que os exemplos anteriores demonstraram a versatilidade das
técnicas de inteligéncia artificial para resolucao de problemas complexos, a mesma pode
ser utilizada no contexto maritimo, especialmente para resolver problemas de colisao e
conducao automética. (ROBERTS et al., 2003) apresenta a evolugao dos pilotos automaticos
maritimos em que o modelo original utilizava controladores PID e evoluiu para controladores
inteligentes com a utilizacao de logica fuzzy e redes neurais como forma de simular as
complexas tomadas de decisoes dos timoneiros. (LEE; KIM, 2004) e (LEE; KWON; JOH,
2004) apresentam utilizagoes de 16gica fuzzy em conducao de veiculos maritimos de forma
a evitar situacgoes de colisao respeitando normas da COLREGS, demonstrando ser uma

alternativa tanto para reelaboragao de trajetorias em tempo real quanto garantir que os
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desvios de trajetoria sejam realizados dentro de uma zona segura e efetivos contra objetos
estaticos e em movimento. (AHMED; HASEGAWA | 2013) estudam o complexo movimento
de atracacao de embarcagoes que sofre muita influéncia dos efeitos ambientais especialmente
em velocidades baixas, para solucionar o problema os autores estudaram o uso de redes
neurais associadas a um controlador PD de forma a simular as acoes realizadas pelos
homens, o controlador inteligente apresentou resultados satisfatérios mesmo em situacoes
diferentes dos dados de treinamento. (IM; NGUYEN, 2017) realizam o treinamento de
uma rede neural com dados de atracacao em um determinado porto e realizam os testes
de verificacao da solugao em condigoes de um outro porto obtendo resultados limitados,
mas que demonstram a versatilidade que o controle inteligente possui.

Existe um ponto de semelhanca entre os varios artigos citados e até mesmo outros
artigos de controle em geral que é a utilizacao de simulacoes como prova de conceito.
Especialmente na area naval, os objetos de estudo sao dificeis de serem estudados em
modelos reais, seja pelo seu tamanho, custo, disponibilidade e outros fatores, sendo assim,
o uso de simulagbes é um ponto crucial na realizagao das pesquisas. (SOUZA JR. et al.,
2009) apresentam duas simulagoes computacionais de manobras em canais brasileiros,
desde a concepc¢ao dos modelos até a entrada de comandos para andlise de respostas.
Projetos de simuladores completos como esses ou até mais simples permitem realizar

analises detalhadas, rapidas e versateis.
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3 Abordagem tedrica

3.1 Variancia e Correlagcao

Uma etapa importante para o desenvolvimento das redes neurais envolve a anélise
de correlacao dos dados, com ela podemos avaliar a qualidade da base de dados. Para
tanto é preciso compreender os conceitos de variancia e correlagdo. A variancia mede a

dispersao de uma distribui¢ao em torno da média (BARBER, 2012):

Z(% - M)Z

2 =1
= 1
a - (1)

Onde z; representa cada elemento da distribuicao, u é a média dessa distribuicao e
n é a quantidade de elementos.
A covariancia é a propriedade que mostra o nivel de relagao entre duas variaveis X

e Y aleatdrias nao independentes (DEVORE, 2012).

Cov(X,Y) = 3 3 (& — o)y — py)p(a. y) (2)

Sendo p(z,y) a fungao de probabilidade conjunta das varidveis X e Y.
Contudo, os valores obtidos pela covariancia apresentam uma falha pelo fato de
dependerem criticamente das unidades de medida (DEVORE, 2012). O coeficiente de

correlacao visa resolver este problema e é definido como:

Cov(X,Y)

Corr(X,Y) =pxy =
Ox0Oy

(3)

Em que ox e oy é o desvio padrao das varidveis X e Y, respectivamente.

Tal defini¢ao limita o valor de correlacao entre —1 < Corr(X,Y) < 1, sendo
possivel analisar a “forca” da relacao entre as variaveis independentemente de sua unidade.
Quanto maior o médulo de seu valor, mais forte é a correlacao entre as varidveis. O sinal
positivo indica que as duas varidveis possuem a mesma tendéncia de comportamento e o

sinal negativo representa o oposto.
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3.2 Aprendizagem

Antes de explicar os principios matematicos que regem uma rede neural é interessante
compreender uma das etapas fundamentais para seu funcionamento, a aprendizagem. Assim
como um ser humano, a percepcao e tomada de decisoes decorre da sua exposicao a fatos que
serao internalizados e compreendidos. Em (RUSSELL; NORVIG, 2004) sao apresentadas

trés divisoes béasicas para aprendizagem segundo a realimentacao utilizada:

e Aprendizado supervisionado: ocorre aprendizado por meio de um mapeamento
entrada-saida previamente definido, ou seja, os dados de entrada estao classificados
com as saidas esperadas de forma que os seus parametros serao adequados para que
proporcionem uma inferéncia similar;

e Aprendizado nao-supervisionado: ocorre aprendizado sem mapeamento entrada-
saida previamente definido, ou seja, o agente recebera apenas as entradas e devera
deduzir os padroes presentes nelas por conta prépria;

e Aprendizado por reforco: também nao apresenta um mapeamento entrada-saida,
mas o aprendizado é baseado em recompensas, por meio de agoes corretas serao
retribuidas as recompensas para que o agente compreenda quando acertou, assim,

iterativamente, converge ao comportamento adequado.

Desta maneira, como o objetivo do projeto é transferir a experiéncia dos praticos
para a rede neural, sera utilizado um aprendizado supervisionado em que as entradas sao
os parametros que definem o estado da embarcacao em dado instante de tempo e as saidas
serao os comandos selecionados pelo profissional. Portanto, o restante deste capitulo sera

focado nesta forma de aprendizado.

3.3 Redes neurais

A unidade basica do cérebro é o neuronio, célula que se interliga com outras de
forma que em conjunto possam transmitir e processar os sinais elétricos. Analogamente,
de forma que se possa reproduzir sua capacidade funcional, foram elaboradas as redes
neurais artificiais que sao compostas por unidades de neuronios artificiais interligados
representados por modelos matemaéticos.

A teoria a seguir estd baseada em (NG, 2018) e também serd o padrao de notagao
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utilizado. Cada unidade pode ser compreendida como uma funcao matematica de forma que
recebe entradas e produz uma saida. Uma arquitetura de conexao entre essas unidades esta
representada na figura 1, no lado esquerdo estao representados os parametros de entrada

(@)

que mais genericamente seriam dados por z;, em que o subscrito representa o parametro

de uma entrada e o sobrescrito entre parénteses o indice da entrada, por exemplo, no caso

deste projeto, xgl) poderia ser a distancia a linha de centro da simulagao 1, xgl) poderia ser

a distancia ao final do canal da simulacao 1, x?) poderia ser a distancia a linha de centro

da simulacao 2 e :Eéz) poderia ser a distancia ao final do canal da simulacao 2. Ao lado
direito estao representadas as camadas ocultas, poderiam existir muitas outras camadas e
cada uma com muitas outras unidades, neste caso, estao representadas 2 camadas com 4 e
3 unidades, respectivamente, da esquerda para direita. Finalmente, na extrema direita estéd
a camada de saida em que g representa o valor inferido pela rede neural para a entrada
(21,22, x3). Embora tenha sido nomeado a entrada como uma camada, geralmente esta
nao ¢ considerada nas numeracoes, portanto, considera-se que a arquitetura da figura
possui apenas 3 camadas sendo 2 ocultas e 1 de saida. Em cada unidade esta representado

o resultado da ativacao a‘[ji] em que o subscrito representa o indice da unidade em uma
camada e o sobrescrito entre colchetes o indice da camada.

Cada unidade da rede neural realiza os dois processos representados no diagrama
da figura 2. Para um vetor de entrada x € R™* com n, sendo o nimero de parametros, a

primeira unidade da camada 1 realiza uma ponderacao linear por:

ol = w4 by (4)

Em que wgl}T é o vetor de pesos transposto de wgll € R" e b[ll] um valor de viés tal

que b[ll} € R. Em seguida é utilizada uma funcao nao linear g : R — R resultando no valor

da ativacao que € a sua proépria saida:

~[1 1 1
gt =l = g1 (5)

A funcao g¢(-) é necessaria pois, em sua auséncia, todas as unidades gerariam
resultados lineares, tornando o conjunto de todos os resultados da rede também linear,
o que faria com que todas as unidades e camadas extras nao proporcionassem efeitos
adicionais, sendo assim, redes mais simples conseguiriam obter o mesmo resultado com

menos processamento.
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Figura 1 — Exemplo de arquitetura de rede neural de 3 parametros de entrada e 3 camadas
sendo duas ocultas e uma saida

Camada de Camadas Camada de
—.+ .
entrada ocultas saida

v

Fonte: Autores, baseado em (NG, 2018)

Alguns exemplos para essa funcao seriam a sigmoéide, definida como:

B 1
S 14e?

9(z) = o(2)

Ou a ReLU (Rectified Linear Unit), definida como:
9(z) = max(0, z) (7)

A escolha da funcao mais adequada depende do propésito da rede neural, por
exemplo, em um classificador bindrio a saida deve ser binaria (0 ou 1) entao a sigmdide
seria uma opcao adequada. Mas sua derivada tende a 0 conforme |z| aumenta, o que pode
tornar a convergéncia mais lenta, por esta razao, a funcao ReLLU é muito utilizada nas

camadas ocultas, propriedades observaveis na figura 3.
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Figura 2 — Diagrama de duas etapas representando a primeira unidade da rede neural na

camada 1
X1
X2
X3 wlllex " b1[1j
. Z£1]
Xn,
Entradas Ponderagdo — Ativagdo — Saida

Fonte: Autores, baseado em (NG, 2018)

Figura 3 — Plotagem da sigméide, equacao 6, e da ReLLU, equacao 7

Sigmoide RelLU
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Fonte: Autores

Pode-se generalizar o processo para toda a rede neural de forma a otimizar o proces-
samento utilizando vetorizacao durante a implementacao em cada camada. Considerando
que os dados de treinamento possuem m entradas de n, parametros cada, define-se a matriz
X € R™=*™ das entradas. Em uma camada [ com nl unidades, define-se a matriz de pesos
Wl e Re' 7l o Getor de vids bl € R que pode ser expandido para B € Rm a0
replicar seus valores ja que todas as m entradas utilizam o mesmo viés. Pela aplicacao da

~ . ~ l ! , , ! . .
funcao de ativacao gl : R xm s Refxm pavers a safda AU € R xm ¢ para simplificar
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a notacao, pode-se considerar A% = X e nl = n,, logo, para cada camada I:

20— T A0-11 L gl
(8)
Al — gl

Esse processo definido pelas equagoes em 8 é conhecido como propagacao, ou seja,

¢é a inferéncia que a rede neural realiza a partir das entradas.
3.4 Treinamento

De posse do mapeamento entrada-saida, o intuito de uma rede neural é inferir uma
saida § que aproxime da saida mapeada y, ou seja, para cada entrada i se espera ¢ ~ y@.
Para simplificar a explicacao, primeiro sera considerado uma unica unidade definida pelo
peso w e viés b. De forma a mensurar a sua performance, pode-se definir uma funcao de

erro, por exemplo, utilizando o erro quadratico dado por:
L(,y) =4 - y)* (9)

Desta forma, pode ser definida a sua funcao de custo que mensura a performance

em todo o conjunto de m entradas de treinamento:
1 o
Jwb) = —> 2G4 (10)
Do qual se obtém o erro quadrético médio (mean squared error - MSE):
Twh) = L300 - oy (1)
7 mai=
Portanto, os resultados da unidade podem ser melhorados ao reduzir o valor da
funcao de custo, pois isso significa que os valores inferidos estao préximos aos valores
esperados. Em outras palavras, o objetivo é calibrar os valores do peso e do viés da unidade
de forma que a funcao custo se aproxime do seu valor minimo. Para encontrar esses valores

adequados, utiliza-se um método chamado gradiente descendente, um método iterativo

que por meio da derivada define a direcao no espaco a ser seguido, ou seja:

0J(w,b)
wi=w— o————

8J(8wb) (12)
bi=b— ol N0

ob
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Em que o termo « é conhecido como a taxa de aprendizado, ou seja, o tamanho do
passo a ser avancado na direcao de decrescimento indicado pela derivada.

Em uma rede neural com L camadas, isso poderia ser generalizado para uma funcao

custo J(WM oM w2 pl Wl plH) andloga:
ol p ey i iy — LS o) 0 13
( b ) ) ) b ) ) m Z (y ’y ) ( )

Portanto, para cada camada [ é realizada a operacao:

OJ (W plt) w2 pi2l | pyiel pitd)

0. wun
wh =W a PTTAl "
Bl . il oJ(WH pltl w2 p2l Ll plel)
e a0l

Sendo o processo definido pelas equagoes em 14 conhecido como retropropagacao,
ou seja, o treinamento da rede neural a partir da minimizacao da funcao custo que significa
uma aderéncia dos resultados inferidos aos valores conhecidos. Uma iteracao completa, ou
seja, a realizacao de uma propagacao e uma retropropagacao ¢ conhecida como epoch.

O processo de treinamento pode gerar um problema importante conhecido como
overfitting em que a rede neural é treinada em excesso e inclui em seu aprendizado os
ruidos intrinsecos dos dados de acordo com a flexibilidade permitida ao modelo. A figura 4
ilustra o efeito de modelos que aderiram pouco e muito aos dados, nota-se que a curva
do custo na base de treinamento é decrescente conforme a flexibilidade do modelo, mas a
curva do custo na base de teste nao, caracterizando na regiao ascendente a ocorréncia de
overfitting, ou seja, o modelo faz previsdes muito boas para a base de treinamento, mas
nao em uma base diferente.

Existem métodos para evitar a ocorréncia deste problema, um deles é conhecido
como dropout em que unidades da rede sao eliminadas aleatoriamente durante o treinamento

de forma a reduzir o excesso de aderéncia do modelo.
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Figura 4 — Do lado esquerdo estao representados os modelos treinados para aderir aos
dados gerados a partir da curva preta com ruidos, nota-se que a curva amarela
tem pouca flexibilidade e ocorrendo o oposto para a curva verde. Do lado direito
estao representadas as curvas de custo na base de treinamento (cinza) e na base
de teste (vermelho) com os pontos coloridos indicando os respectivos erros em
relacao aos modelos da esquerda, demonstrando o overfitting do modelo verde.
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Fonte: (JAMES et al., 2014)

3.5 Redes neurais recorrentes

As redes neurais na estrutura apresentada até o momento sao conhecidas como
redes neurais sem realimentacao, sao redes mais simples que podem obter resultados muito
bons em diversas aplicagoes, mas nem tanto em outras. Uma das desvantagens que podem
ser observadas esta em seu préprio nome: sem realimentagao, ou seja, as entradas estao
individualizadas e isoladas, uma nao afeta o resultado da outra. Desta maneira, situagoes
em que os dados de treinamento possuem uma ordem légica nao sao detectados. Por
exemplo, se o objetivo fosse elaborar um rede neural que detecte nomes, na frase “Joao
estuda mecatronica”, cada palavra seria aprendida individualmente, mas a relacao entre
elas devido a ordem nao seria detectada, logo, a informagao implicita de que quem (Joao)
realiza uma agado (estuda mecatronica) possui alta chance de ser um nome, nao seria
considerada pela rede neural.

Esse problema é recorrente e relevante na area de aprendizado de maquinas, por

exemplo, a deteccao de sequéncias é importante em textos, em misica, em sons e outros.
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Para abordar essa questao, foram desenvolvidas as redes neurais recorrentes. De forma a
explicar seu funcionamento, sera necessario incrementar a notagao ja utilizada: pode-se
definir 2<¥> como a k-ésima parte da sequéncia de x, por exemplo, sendo a frase anterior

3> serd “mecatronica’.

o valor de = entdao <!> serd “Joao”, £<?> serd “estuda” e x<

A figura 5 apresenta um modelo esquematico do funcionamento de uma rede neural
recorrente. Assim como na notacao anterior, mas acrescido do sobrescrito entre os sinais de
< e >, x representa a entrada, a representa o resultado da funcao de ativacao, y representa

a saida ou o valor previsto para cada entrada e T} representa o nimero de subpartes na

entrada x. Algebricamente essa estrutura pode ser representada como:

a<k> — g(waaa<k—1> +wax$<k> + ba) ( )
15
g<k> — g(wyaa<k> + by)

Em que a notagao w,, indica o peso para qual funcao u esta sendo calculada e sobre

qual parametro v de entrada da camada, admitindo os valores a, x ou y. Por exemplo, wg,

<k>

é o peso para a entrada x no calculo da funcao de ativacao a ser transmitido para a

camada k + 1. A notagao b, tem representacao analoga, mas para o viés.

Figura 5 — Exemplo esquematico do funcionamento de uma rede neural recorrente
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QOO

A
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f A ——

A —
o
=
v

2> 3>

Entradas

X X X X

Fonte: Autores, baseado em (NG, 2018)

Detalhando seu funcionamento, a figura 5 esta representando uma tnica camada da

<k> entram individualmente e sdao processadas

rede neural recorrente em que as entrada x
gerando dois tipos de saida: §<*> e a<*> sendo a primeira a saida prevista pela rede

analogo ao da rede neural sem realimentacao e a segunda é uma saida de comunicacao
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entre as entradas < k >, ou seja, é a realimentacao de uma entrada anterior que serd
considerada ao realizar o novo processamento.

Desta maneira para realizar a definicao e treinamento da rede como um todo podem
ser utilizados os mesmos principios ja abordados como a escolha da taxa de aprendizagem,
nimero de unidades, quantidade de camadas, funcao de custo, retropropagacao e assim
por diante.

O modelo apresentado ¢ uma ideia geral de como funciona a retroalimentacao, mas
note que a informacao principal advém da entrada anterior e nao do conjunto todo, por
essa razao outros modelo de unidade para redes neurais recorrentes foram desenvolvidos
de forma a implementar uma espécie de “memoria” que possa armazenar informacgoes

relevantes de mais entradas, por exemplo, a GRU (Gated Recurrent Unit) esquematizada

na figura 6.
Figura 6 — Modelo esquematico de uma unidade do tipo GRU
c<k-1> N /,,-\\\ c<k>
™\ X ™ + J "
N S
t1-r1, I
f’/ \\
v (1- ) P
Ve N, S~ Ve N,
|\ X } + .IL\ x '/|
e l_‘r ru \“'f/:"<k>
o o tanh
r 9 1\
x<k>

Fonte: Autores, baseado em (NG, 2018) e (CHANGHAU, 2017)

Este tipo de unidade pode ser descrita segundo as equagoes em 16:

o<k> — tanh(wccfrc<k_1> + w4+ be)
Fu — O.(wucc<kfl> + wuz$<k> 4 bu)
T, = 0<wrcc<k_1> + wmx<k> + b'r') (16)

C<k> — I‘\u’5<k> + (1 . Fu)c<k—1>
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A notagao segue o mesmo padrao anterior acrescido de novas variaveis. A letra c
é uma abreviacao para memory cell ou célula de memoéria sendo sua funcao armazenar

o estado de entradas passadas. Com base na memoéria passada ¢c<*~> e a nova entrada

<k k>

2<F> serd realizado o calculo para definir o possivel novo valor de ¢<¥> definido como ¢<

Esse novo valor pode ou nio ser a saida ¢<*>, isso dependerd de I',. A varidvel I' é o gate

ou portao que designa o nome da célula (GRU). Existem dois tipos de gates, o T, u de

update, responséavel por definir se ¢<*> serd igual a ¢c<*'> ou ¢<*> e o I',,, r de relevance,

<k=1> o célculo de ¢<F>.

responsavel por definir qual a relevancia de ¢
A fungao o(+) representa a sigmédide como descrita na equagao 6 e tanh(-) representa

a tangente hiperbodlica dada por:

eF —e?

tanh(z) = e p—
e+ e ?

(17)

Figura 7 — Plotagem da tangente hiperbdlica, equagao 17

Tangente hiperbolica

1k

-

Fonte: Autores
Nota-se que a escolha de o(+) para o célculo de T', se deve ao fato da mesma variar

<k=1> 116 novo valor de ¢<*>. Enquanto a

entre 0 e 1 representando um percentual de ¢
tanh(-) varia de -1 a 1 e possui uma estreita zona de transi¢do como pode ser observado
na figura 7, desta maneira, na maioria dos casos a fun¢ao retorna um valor préximo de -1
ou de 1 selecionando ¢<#¥=1> ou ¢<*>,

Outro modelo de unidade utilizado para redes neurais recorrentes ¢ o LSTM (Long
Short-Term Memory), semelhante ao modelo GRU, mas com gates adicionais como pode

ser observado na figura 8. Suas equacgoes estao em 18.



33

Figura 8 — Modelo esquemético de uma unidade do tipo LSTM
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Fonte: Autores, baseado em (NG, 2018)
R = tanh(wea™* > + we x> + b,
[y = 0(0ua™" " + wy,v=F +b,)
Ff = O'(’U)faa<k_l> -+ ’U)fx33<k> + bf) ( )
18

[y = 0(Woaa* ™ 4+ wopz =¥ +b,)
C<k> — Fu’5<k> 4 ch<k—1>
a~" = T tanh(c=+>)

Percebe-se que existe uma semelhanca entre as duas unidades, mas esta é mais
complexa ao apresentar um gate I', analogo ao anterior, mas também um gate I'y, f de
forget ou esquecer, portanto, manter ou nao o antigo valor ¢<*='> depende de dois gates
nesta célula ao invés de apenas I', como na célula GRU. Adicionalmente, existe um I',, o
de output ou saida, que pondera a saida da ativacdo segundo o valor de ¢<¥>.

Nao existe um consenso no meio académico entre o uso de GRU e LSTM, em geral
o LSTM ¢é mais utilizado, mas observa-se pelo descrito que o GRU ¢ mais simples, logo,

pode apresentar menor complexidade e melhor performance em determinados casos.
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4 Metodologia e ferramentas

A metodologia base para a solugdo do problema apresentado € a utilizacao de redes
neurais, pois esta nao requer a modelagem das nao linearidades e pode ser utilizada como
um analogo das tomadas de decisoes dos praticos além de ja ter apresentado resultados
promissores como abordado no capitulo 2.

Como a intengao é utilizar os dados de simulagoes passadas, a forma mais adequada
é a utilizagao de um aprendizado supervisionado como descrito em mais detalhes na segao
3.2. De forma a gerar os dados de treinamento, como detalhado na secao 5.4, foi necessaria
a utilizacao da linguagem Python, esta que também sera utilizada no desenvolvimento da
rede neural.

A linguagem Python foi uma escolha baseada em diversas premissas que entre elas

podem ser citadas:

e Os autores ja possuem experiéncia com a linguagem e softwares auxiliares de forma
a facilitar a execugdo do projeto. Entre esses softwares estd a IDE (Integrated
Development Environment) denominada PyCharm da empresa JetBrains que auxilia
o desenvolvimento do cédigo fornecendo fungoes adicionais especialmente para realizar
o debug do codigo;

e A linguagem também possui bibliotecas uteis como o NumPy que permite otimizar
o cbédigo por vetorizagao ou o Pandas que facilita a manipulacao dos dados de
treinamento;

e £ uma linguagem de programagao muito utilizada por desenvolvedores de redes
neurais portanto é possivel encontrar uma comunidade muito ativa, facilitando a
busca por solugoes aos problemas deparados;

e Existem muitos frameworks de redes neurais que sao compativeis com a linguagem
permitindo maior flexibilidade na selecao da mesma, por exemplo, TensorFlow da
Google Brain, PyTorch hoje desenvolvido pelo Facebook, Keras de Frangois Chollet

entre outros.

Para o controle das versoes foi utilizado o GitHub, servico escolhido principalmente
pela familiaridade dos autores e servindo aos propdsitos bésicos necessérios (facilidade de

uso, controle, compatibilidade com PyCharm e gratuidade).
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O framework utilizado foi o TensorFlow, os outros também poderiam ser boas

solugoes, mas alguns pontos do TensorFlow ressaltaram sua escolha:

e Eum framework popular na comunidade, desta forma, assim como o Python, possui
diversas fontes para aprendizado e resolucao de problemas;

e Utilizacao por grupos de pesquisa relevantes como o DeepMind, adesao por grandes
empresas como o Twitter além de ser desenvolvido pelo Google, garantindo maior
credibilidade para sua escolha;

e O framework possui suporte para diversos modelos de redes neurais, desta forma, foi
possivel testar varias implementacoes diferentes como redes neurais sem realimentacao
até redes neurais recorrentes;

e O framework possui suporte para utilizagao de CUDA, plataforma desenvolvida pela
Nvidia, agilizando o processo de treinamento da rede neural;

e Uma das dificuldades no desenvolvimento de redes neurais é compreender o que
estd ocorrendo nela para conseguir reparar problemas ou otimizar, portanto, o
TensorBoard é interessante para facilitar o desenvolvimento por ser uma ferramenta

visual para avaliacao.

Para facilitar o uso do TensorFlow, foi utilizada a implementacao do Keras ja
incluso no pacote, este é executado por cima do primeiro e sua funcao é permitir que
a criacao de redes neurais seja mais intuitiva e pratica, assim, agilizando o processo de
desenvolvimento, correcao e otimizacao da solugao proposta.

A escolha da arquitetura ideal para a rede neural é complexa de ser definida, muitas
vezes é realizada por teste e avaliacao de performance. Desta maneira, iniciou-se utilizando
uma rede neural sem realimentagao baseada no trabalho de (AHMED; HASEGAWA, 2013)
em que foi desenvolvido com o uso de minimo erro quadratico e averiguado diferentes
valores de unidades em cada camada. Nas 2 camadas ocultas, o melhor resultado para o
comando de leme foi dado por 15 unidades na primeira camada e 10 na segunda enquanto
para comando de maquina, 10 unidades na primeira e 5 unidades na segunda. Esta foi
apenas uma base para a arquitetura inicial, ela foi treinada com os dados do TPN e
averiguada quanto a performance.

Como esta rede neural nao satisfez os requisitos, outras arquiteturas mais complexas
também foram testadas. Por exemplo, o uso de redes neurais recorrentes, pois esta apresenta

uma “memoria”’ das entradas passadas o que possibilita compreender que existe uma série
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temporal entre os comandos, permitindo uma maior complexidade para o seu aprendizado,
logo, esperou-se melhor aderéncia aos dados.

Para o processo de selecao da solugao mais adequada foi realizado o treino da rede
neural com os dados de treinamento e validado no integrador numérico, Dyna. A literatura
como em (NG, 2018) e outras fontes abordam a escolha por meio da divisao dos dados
de treinamento em duas ou trés partes, basicamente, 70% dos dados para treinamento e
30% para validagao. O problema desta abordagem, no caso deste projeto, é que o sistema
em questao é um sistema dinamico, portanto, se a rede neural avaliar que é necessario
um comando de leme ou de maquina diferente daquele realizado pelo pratico nos dados
de treinamento, a proxima entrada registrada nao estara retratando fielmente o estado
naquele momento, logo, estara invalido. Desta maneira, os dados de treinamento foram
utilizados para verificar se, pelo menos, a rede estava aderindo ao resultado esperado,
assim, a comparacao era util para realizar uma primeira verificacao do resultado, mas nao
sendo considerada condicao suficiente para invalidar a solugao obtida.

A ltima ferramenta a ser utilizada é do Centro de Simulagoes Nauticas e Portuarias
do TPN que conta com simuladores para estudo de manobrabilidade de embarcacoes.
Segundo (TPN-USP, 2017), o centro ¢ credenciado pelo ITTC(International Towing Tank
Conference) e IMSF (International Marine Simulator Forum), o que garante confiabilidade
na simulacao e credibilidade ao validar a rede neural proposta. Para este projeto, sera
utilizado o integrador numérico do simulador, denominado Dyna, que permite processar
numericamente as equagoes que regem os fenomenos fisicos da navegacao de uma em-
barcagao. Durante a fase de otimizacao da rede neural, foi elaborada uma interface em
Python que permite a comunicagao entre a rede neural e o Dyna. Sua fungao é permitir a
comunicagao entre as duas aplicagoes pré processando os dados no formato adequado e

controlar as condicoes de simulacao.
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5 Dados para treinamento e simulacao

5.1 Caracteristicas dos navios

Existem diversos navios com as mais diversas propriedades fisicas. Essas sao es-
senciais de serem consideradas no simulador numérico a ser utilizado na validagao, pois
sao as propriedades que influenciam no desenvolvimento do sistema dinamico segundo as
entradas selecionadas e as perturbacoes.

Para o presente projeto, baseado nos dados de simulacoes dos préticos, foram consi-
derados, principalmente, 2 modelos de navios: o Aframax e o Suezmax, cujas caracteristicas
fisicas sao descritas na tabela 1 e as velocidades de seus propulsores sao apresentados na
tabela 2. Ambos sao navios-tanque, sendo o Aframax o maior na escala Average Freight
Rate Assessment (AFRA) e capacidade de carregamento entre 80 mil e 120 mil toneladas,
ja o Suezmax é um navio petroleiro com capacidade de carregamento entre 140 e 175
mil toneladas, cujas dimensoes sao as maximas suportadas pelo canal de Suez, no Egito

(TRANSPETRO, 2018).

Tabela 1 — Caracteristicas dos navios Aframax e Suezmax (em metros)

Boca Pontal Comprimento Calado
Aframax | 42.00 22.50 244.75 15.30
Suezmax | 48.00 23.10 278.50 15.00

Fonte: Autores

Tabela 2 — Velocidades dos navios Aframax e Suezmax (em rpm)

0) Parado 1) Muito Devagar 2) Devagar 3) Meia For¢ca 4) Toda Forga

Aframax 0 19.20 38.40 57.60 76.80
Suezmax 0 28.77 32.88 57.54 65.76

Fonte: Autores

5.2 Canal de Suape

Todos os dados descritos na secao 5.4 foram simulados em um modelo do canal do
porto de Suape localizado no estado de Pernambuco, Brasil. Este complexo estd interligado
a mais de 160 portos no mundo sendo o porto mais estratégico da regiao nordeste (SUAPE,

2018b). O porto apresenta uma area total organizada com mais de 3 mil hectares, porto
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interno com 1.6 quilémetros de cais e 5 bercos. Na figura 9 é apresentado o canal de acesso

ao porto que possui as seguintes caracteristicas (SUAPE, 2018a):

e Extensao: 5 quilometros;
e Largura: 300 metros;

e Profundidade: 16.5 metros.

Caracteristicas essas essenciais para verificar a capacidade de acesso de uma deter-
minada embarcacao e referéncia tanto para o pratico definir os comandos para a manobra

quanto para a rede neural obter os parametros de entrada.

Figura 9 — Canal de acesso do porto de Suape

4

[T T

Fonte: Eicomnor Engenharia

No modelo do canal para simulacdo, as referéncias para os calculos sao dadas pelas
boias ilustradas na proxima se¢ao na figura 10, nestes a largura ao longo do canal é de
aproximadamente 200 metros com a abertura final de até 400 metros com aproximadamente

6 quilometros de extensao.

5.3 Condicoes ambientais

Como descrito por (AHMED; HASEGAWA, 2013), na manobra de entrada no canal,
conforme a velocidade da embarcacao é reduzida, as condigoes ambientais intensificam
seus efeitos sobre o navio afetando a sua controlabilidade, por isso a importancia de sua

consideracao e a dificuldade de realizagao da manobra.
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Existem basicamente trés agentes ambientais que requerem atencao do pratico: a
correnteza, as ondas e o vento, que exercem forgas e momentos sobre o navio podendo
desviar da rota prevista. Os trés estao implementados no simulador do TPN e serao
considerados para realizar a validacao da solucao obtida.

Entretanto, existem infinitas combinacoes possiveis de intensidade, direcao e sentido
desses trés agentes, desta forma, para padronizar a validacao foi selecionado um caso de

intensidade média dada na tabela 3.

Tabela 3 — Condigoes ambientais para validagao sendo N direcao norte e SE diregao sudeste

Correnteza Vento Onda
Direcao Intensidade | Direcao Intensidade | Direcao Periodo Altura
N 0.5 nos SE 15.0 nos SE 8s 1.0 m

Fonte: Autores

5.4 Dados de treinamento

A primeira etapa do projeto foi o desenvolvimento dos dados de treinamento. Esta
etapa visa processar os dados brutos que existem de simulagoes passadas realizadas por
praticos no TPN de forma que resultem em dados de qualidade no formato necessério.

Inicialmente, foi obtido uma colecao de 113 simulacgoes. Entretanto, nem todas
eram validas entao foi necessario fazer uma analise individual dos videos das simulagoes.
Na figura 10, denominado como caso 2 do Suape 2017, pode ser observado uma imagem
com todos os estados representados em um desses videos, em cinza claro esta o canal e em
cinza escuro estao os estados da embarcacao com o tempo. Os pontos vermelhos e verdes
sao as boias que definem as margens do canal. Por ser uma anélise visual, foram adotados

critérios menos precisos que depois seriam refinados por meio de algoritmo:

e A embarcagao deve estar realizando uma manobra de entrada, ou seja, do mar para
o bergo;

e A embarcacao deve permanecer dentro do canal durante toda a manobra.

Filtradas as simulagoes que satisfacam essas condigoes, as mesmas foram processadas
para gerar os arquivos de treinamento. Na tabela 4 pode ser visto o registro do primeiro
segundo da simulacao da figura 10, foram apresentadas apenas as colunas de interesse.

Desta tabela, pode-se obter o instante de tempo em segundos de cada estado (time_stamp),
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Figura 10 — Conjunto dos estados representados no video da simulagao do caso 2 do Suape
2017

Fonte: Orientador - TPN-USP

as coordenadas cartesianas em metro (z e y), o angulo de aproamento em graus (z2z), as
velocidades locais em metros por segundo (vz e vy), a velocidade de guinada em graus
por segundo (vzz), o comando de leme em radianos (rudder_demanded_orientation_0) e a
ordem de comando de maquina em rotagoes por minuto (propeller_demanded_rpm_0).
Na tabela 5 esta representada a saida ao se utilizar o algoritmo de processamento
nos dados da tabela 4. De forma resumida, o algoritmo obtém os dados de simulacao de
planilhas auxiliares para formar o cabecalho com o nome do navio, o tipo de cenario, o tipo
de manobra executada e os dados de corrente, vento e onda. Posteriormente é realizado
o processamento das distancias de interesse mensurados em metros e representados na

figura 11:

e Distancia ao final do canal - ‘distance_target’ (J;): relevante para que se saiba qual o
comprimento de canal restante para reducao de velocidade;

e Distancia a linha de centro - ‘distance_midline’ (0,,): relevante para indicar o quanto a
embarcacao esta distante da linha imaginaria central do canal fornecendo informagoes

para definir o comando de leme.
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Figura 11 — Diagrama esquematico dos parametros da embarcacao que serao utilizados
como entradas. As linhas ponto-tracejadas verde e vermelho representam as
linhas imaginérias que sao definidas pelas boias (pontos circulares). A linha
tracejada cinza é a linha imaginaria que liga as boias correspondentes para
determinacao dos pontos médios amarelos que definem a linha imaginaria
central também em amarelo.

X

Fonte: Autores

As coordenadas da boia e do ponto final do canal sao obtidas manualmente para
cada porto. De posse dessas coordenadas e da embarcacao, foi utilizado geometria analitica
para célculo das distancias (para o d¢; distancia ponto a ponto do centro da embarcacao até
o objetivo e para ¢, distancia ponto a reta do centro da embarcacao até a linha imaginaria
central). A linha imagindria central é calculada com base nas boias, para cada par de boias
(verde e vermelho) correspondentes é obtido o ponto médio (amarelo) e a sequéncia desses
pontos definem a linha central, ressalta-se que esta é uma linha algébrica que nao existe
na realidade sendo a mesma observacao valida ao ponto amarelo.

Por fim, no arquivo original, a velocidade do propulsor é dado em rpm, mas no caso
de um pratico, o comando é dado em ordem de méquina, ou seja, stop (parado), dead slow
(muito devagar), slow (devagar), half (meia forca) e full (toda forga) representado por
valores inteiros de 0 a 4, respectivamente. Para os valores positivos estao representadas

as ordens ahead (& vante) e em negativo as ordens astern (a ré). Na tabela 2 pode ser
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observada a conversao entre os valores para o Aframax e o Suezmax.

Portanto, por meio do cabecalho gerado, parte dos dados originais e alguns
parametros calculados, sao obtidos os dados processados que serao utilizados no trei-
namento. O tltimo detalhe é filtrar para que apenas os dados tteis sejam apresentados no
arquivo de saida, isso é necessario, pois embora a simulagao esteja boa para ser utilizada,
ela pode conter partes que nao sao de interesse, por exemplo, apds a manobra de entrada
no canal pode existir uma manobra com rebocadores que fazem o atracamento efetivo,
manobra esta fora do escopo deste projeto.

De forma a exemplificar os resultados, a figura 12 consolida o resultado desse
processamento no caso 2 do Suape 2017. Nota-se que os resultados estao coerentes, as
aproximacoes e afastamentos da linha imaginaria central ocorrem em sincronia com os
movimentos correspondentes da figura 10, a embarcagao manobra em direcao ao ponto
final (distancia ao final do canal tende a zero), a velocidade de avango é reduzida conforme
o requisito e as ordens de maquina estao discretizadas.

Para finalizar, um panorama geral sobre esse processo é que foram examinadas
113 simulagoes, mas apenas 45 foram aprovados para efetivamente serem utilizados no
treinamento da rede neural. Embora esse ntimero aparente ser pequeno, vale notar que
cada arquivo possui dezenas de milhares de estados, desta forma, ao contabilizar todos os

estados que serao utilizados, a soma se aproxima de quase 650 mil.
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6 Arquitetura da rede neural

De forma que a rede neural possa funcionar como esperado é necessario que ela
possua uma arquitetura definida.

O primeiro passo é realizar a escolha adequada dos parametros de entrada e de
saida. Como o objetivo da rede neural é o controle da embarcagao, seu movimento é

definido por dois comandos bésicos:

e Comando de leme (0): define a dire¢ao da embarcagao e é mensurado em radianos;
e Comando de maquina (w): define a rotagao do propulsor e é adimensional variando

de -4 a 4.

Para as entradas, foram escolhidos os parametros mais relevantes para a tomada de

decisao dos praticos:

Distancia ao final do canal - ‘target’ (6;): mensurado em metros;

Distancia a linha imagindria central - ‘midline’ (d,,): mensurado em metros;

Velocidade local (v,,v,): mensurado em metros por segundo;

Angulo de aproamento (f): mensurado em graus;

Velocidade de guinada (vg): mensurado em graus por segundo.

O detalhamento para apurar esses valores estao descritos na se¢ao 5.4. Conforme
o desenvolvimento da rede neural é possivel apurar sua performance e realizar ajustes.
Por exemplo, inicialmente a rede neural possuia como entrada as distancias as margens
definidas pelas boias a bombordo (d,) e a boreste (J,), mas os resultados néo estavam
satisfatorios e foi realizada uma alteracao para substituir as duas medidas por uma tnica
que é a distancia a linha imaginéria central como utilizada por (AHMED; HASEGAWA,
2013). Essa substitui¢ao é vantajosa porque simplifica os parametros que a rede neural
precisa averiguar para aderir e reduz a possibilidade das entradas nao serem linearmente
independentes, pois as varidveis d,, d; e 5 podem possuir uma dependéncia. Considerando

tais variaveis, foram estabelecidas as seguintes relagoes entre elas:

0 = f(vg, vy, B,08,0m) (19)

w:g(vxavyaﬁavﬁaémadt) (20)
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Como explicado no capitulo 3, existem diversas formas de estruturar a rede neural
(representagao das fungoes f(+) e g(+)), a tarefa de definir os hiperparametros mais adequados
nem sempre possuem metodologias exatas e muitas vezes sao definidos por meio de tentativa
e erro. No presente trabalho foram realizadas diversas alteragoes que eram validadas
conforme a metodologia apresentada no capitulo 4.

As primeiras tentativas de rede neural foram as redes sem realimentacao, que como
discutido em mais detalhes na segao 8.1, nao apresentaram resultados satisfatorios. Por essa
razao, a solucao por redes neurais recorrentes foi cogitada na expectativa de um melhor
aprendizado. Sua utilizagao poderia ser mais adequada devido a natureza do problema a
ser solucionado: os dados de treinamento sao uma discretizagao no tempo, intervalos de
0.1 segundo, de uma sequéncia de estados da embarcacao, portanto, uma abordagem que
possa compreender a existéncia de uma ordem entre os estados poderia ser mais eficiente.
Desta maneira, foram realizados testes com unidades de GRU (Gated Recurrent Unit) e
LSTM (Long Short-Term Memory). Diversas variantes foram testadas e o trabalho versara
sobre as que obtiveram os melhores resultados. Estas estao descritas na tabela 6 e com

resultados na segao 8.3.

Tabela 6 — Parametro das redes neurais recorrentes sendo MSFE referente a equagao 11

Taxa de Camadas Dropout Funcao de Funcao

Rede | aprendizado (unidades) (%) ativacao  de custo
1 0.001 GRU(128)/GRU(128) 0 tanh MSE
2 0.001 Dense(128)/GRU(128) 20 sigmoid MSE
3 0.001 GRU(128)/LSTM(128) 0 sigmoid ~ MSE
4 0.001  GRU(256)/GRU(128)/GRU(32) 10 sigmoid ~ MSE

Fonte: Autores
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7 Validagao

7.1 Modulo de integracao

Como explicado no capitulo 4, o teste e validagao da rede neural pela metodologia
tradicional nao é a mais adequada devido ao sistema controlado ser um sistema dinamico.
Desta maneira, a abordagem escolhida para realizar os testes e, de fato, definir se a solugao
estd controlando a embarcacao de forma adequada é o uso de simulacao.

Para possibilitar agilidade no desenvolvimento do controlador e sua validagao,
foi necessario elaborar um sistema que integrasse o treinamento da rede neural com o
processo de simulacao, logo, o ciclo estaria automatizado permitindo que os autores nao
necessitassem interferir manualmente entre uma tarefa e outra. Essa ferramenta é de
utilidade porque, dependendo da estrutura da rede neural, o seu treinamento demanda
tempo, desta maneira, automatizar o ciclo de validagao permite executar todo o processo
de forma continua.

A estrutura bésica para elaboracao da integracao pode ser observada no diagrama
de componentes da figura 13. O componente que este capitulo aborda é o denominado
“Integragao”. Sua funcao principal é ser uma interface de comunicacao entre a rede neural
e o Dyna.

Figura 13 — Diagrama de componentes demonstrando a funcionalidade da interface de
integracao entre a rede neural e o Dyna
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Fonte: Autores

O Dyna ¢ o integrador numérico desenvolvido no TPN que permite simular a

navegacao das embarcagoes, as equagoes que regem os fendmenos que afetam a embarcagao
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estao implementados para serem resolvidos numericamente. Existem diversas condicoes
que podem afetar a simulacao, por exemplo, as caracteristicas fisicas da embarcacgao, o
relevo submarino da regiao, a direcao e a intensidade do vento, a direcao e a intensidade
da maré e muitos outros parametros. Para definicao dessas influéncias, o integrador busca
no arquivo do tipo “P3D” os valores a serem considerados e envia para o Dyna construir
o ambiente de simulagao.

Para fazer a manobra da embarcacao, existem basicamente dois comandos que
podem ser enviados para o integrador: o comando de maquina e o comando de leme. A rede
neural desenvolvida busca simular de forma coerente com o que os praticos realizam, assim,
os comandos de maquina variam entre stop, dead slow, slow, half e full nas diregoes astern
e ahead enquanto o Dyna recebe o percentual da velocidade maxima das caracteristicas
da embarcacao simulada. De maneira analoga funciona o comando de leme, a rede neural
define comandos em radianos e o Dyna recebe em percentual do méximo de leme. Portanto,
o modulo de integracao também serve para realizar essa compatibilizacao de comunicagao
entre 0os componentes.

Também faz parte deste médulo o calculo de 9, e d; que sao parametros de entrada
da rede neural a serem enviados em conjunto com os dados do estado que sao obtidos pelo
retorno do Dyna.

A partir da execugao da simulagao, o Dyna gera um arquivo como o da tabela 4
que podera ser utilizado posteriormente para gerar os graficos semelhantes ao da figura 12.
Para facilitar a visualizacao da simulacao, uma plotagem dos estados é realizada em tempo
de execucao para verificar sua trajetoria como apresentado na figura 22. E importante
observar que a embarcagao nao esta representada em escala e em formato preciso ao
modelo simulado, pois esta é apenas uma ferramenta de acompanhamento, a analise mais
precisa e correta deve ser realizada diretamente nos dados de saida da simulacao.

Esse modulo foi desenvolvido sobre outro médulo pré-existente do aluno de mestrado
José Amendola Netto Andrade de quem sao os direitos autorais do codigo. Por parte
dos autores foram realizadas apenas adaptagoes para considerar o modelo de rede neural

proposto.
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7.2 Condigoes iniciais

Um aspecto importante para realizar a simulacao é a definicao da condigao inicial
do navio, ou seja, quais os valores dos parametros que definem o estado do navio no

momento de partida. Para tal, o Dyna requer os seguintes valores:

e Coordenada x global (z): mensurado em metros;

Coordenada y global (y): mensurado em metros;

Angulo de aproamento (B): mensurado em graus;

Velocidade de avanco (v,): mensurado em metros por segundo;

Velocidade de deriva (v,): mensurado em metros por segundo;

Velocidade de guinada (vg): mensurado em graus por segundo.

Na secao 8.3 serao discutidos os resultados das simulagoes para diferentes condicoes
iniciais de forma a analisar a influéncia de cada parametro no desempenho da rede neural
para a execucao da manobra.

A tabela 7 apresenta as condigoes referentes a influéncia do posicionamento inicial
mais préximo da margem bombordo (1), exatamente na linha média (2) ou mais préximo

da margem boreste (3) com resultados descritos na subsecao 8.3.2.

Tabela 7 — Parametros do navio para as condicoes iniciais no teste de posicionamento

Condigao inicial | 2 (m) y (m) B(°) vy (m/s) v, (m/s) wvg (°/s)
1 11611.97 5404.08 -166.45 4.00 0.00 0.00
2 11601.97 5445.60 -166.45 4.00 0.00 0.00
3 11591.96 5487.15 -166.45 4.00 0.00 0.00

Fonte: Autores

A tabela 8 apresenta as condicoes referentes a influéncia do angulo de aproamento
inicial direcionando a embarcagao para a margem bombordo (4), alinhado ao canal (5) ou
para a margem boreste (6) com resultados descritos na subsegao 8.3.3.

Tabela 8 — Parametros do navio para as condigoes iniciais no teste de angulo de aproamento,
sendo que a condicao 5 é a mesma que a condicao 2 da tabela 7

Condigao inicial | = (m) y (m) B (°) v, (m/s) v, (m/s) wvg (°/s)
4 11601.97 5445.60 -151.45 4.00 0.00 0.00
5(2) 11601.97 5445.60 -166.45 4.00 0.00 0.00
6 11601.97 5445.60 -181.45 4.00 0.00 0.00

Fonte: Autores
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A tabela 9 apresenta as condigoes referentes a influéncia da velocidade de guinada
inicial no sentido anti-horério (7), sem rotacao (8) ou sentido horério (9) com resultados
descritos na subsecgao 8.3.4.

Tabela 9 — Parametros do navio para as condigoes iniciais no teste de velocidade de guinada,
sendo que a condicao 8 é a mesma que a condicao 2 da tabela 7

Condigao inicial | z (m) y(m) B(°) v, (m/s) v, (m/s) vz (°/s)
7 11601.97 5445.60 -166.45 4.00 0.00 -0.11
8 (2) 11601.97 5445.60 -166.45 4.00 0.00 0.00
9 11601.97 5445.60 -166.45 4.00 0.00 0.11

Fonte: Autores
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8 Resultados

8.1 Resultados preliminares

Iniciou-se o processo de apuracao pelas redes sem realimentacao que nao estavam

aderindo apropriadamente aos dados de treinamento, muitas vezes apresentando saidas

constantes ou com variagao minima como apresentado nas figuras 14 e 15 que simularam

os mesmos estados da figura 12.

Figura 14 — Comando de maquina uniforme obtido com a rede neural sem realimentacao

no caso 2 do Suape 2017 demonstrando nao estar controlando adequadamente
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Figura 15 - Comando de leme uniforme obtido com a rede neural sem realimentacao no

caso 2 do Suape 2017 demonstrando nao estar controlando adequadamente
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O modelo baseado em (AHMED; HASEGAWA, 2013), descrito no capitulo 4,
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apresentou uma melhora nos resultados como pode ser observado nas figuras 16 e 17. E

possivel verificar uma maior oscilagao em relagao as figuras 14 e 15, mas ainda com baixa

amplitude sendo insuficiente para controle em situacgoes que requerem comandos mais

abruptos.

Figura 16 — Comando de maquina com a rede neural de arquitetura baseada em (AHMED;
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Figura 17 — Comando de leme com a rede neural de arquitetura baseada

HASEGAWA, 2013) no caso 2 do Suape 2017
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Desta maneira, foram requeridas duas etapas para contornar a nao funcionalidade

destas primeiras tentativas: primeiramente uma andlise mais criteriosa dos dados a fim

de verificar a viabilidade de sua utilizagao como descrito em detalhes na secao 8.2 e
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posteriormente a utilizacao de redes neurais recorrentes como solucao final detalhado na

secao 8.3.

8.2 Andlise de dados

Um aspecto importante em qualquer aprendizado de maquina é a qualidade dos
dados disponiveis para uso, ou seja, o algoritmo desenvolvido pode apresentar um desem-
penho indesejado de acordo com a base de dados que foi utilizada para treinar o mesmo.
Nesse caso realizou-se a analise dos parametros de entrada com os de saida.

As figuras 18 e 19 apresentam a distribuicao de cada parametro de entrada descrito
nas equacoes 19 e 20, respectivamente, para cada saida. De forma geral é dificil identificar
padroes nessas imagens embora a expectativa fosse de que elas existissem claramente. Por
exemplo, uma expectativa era de que no gréfico é,, por 0 fosse verificado uma concentragao
maior em 6, negativo com # positivo e também em ¢,, positivo com 6 negativo, pois sao
os comandos que direcionariam a embarcagao para a linha de centro.

Entretanto, para realizar a manobra da embarcacao é necessario considerar o
conjunto todo desses parametros e nao individualmente. Por essa razao existe a dificuldade
em identificar os padroes, por exemplo, se vg estiver ascendente rapidamente, para o
pratico é mais importante reduzir essa taxa de aumento do que realizar o alinhamento da
embarcacao na linha de centro, pois a embarcacao pode se tornar muito instavel. Esta é
uma das razoes para a existéncia de pontos em todo o espaco de d,, por 6, explicando a
quebra da expectativa apresentada.

No caso do comando de maquina, figura 19, o aparente padrao entre as variaveis
se deve ao fato da discretizagao dos valores do comando de maquina, assim, nao existe o
preenchimento do espago todo, o que torna a aparéncia menos caotica.

De maneira a realizar uma analise mais precisa, foi realizada uma verificagao por
meio de correlacao. Na tabela 10 esta representada a correlacao dos parametros com a
saida no caso 2 do Suape 2017 apresentado na secao 5.4. Pode-se observar que poucas
variaveis apresentaram um indice de correlagao acima de 0.5 e nenhum acima de 0.7 que
seria um valor interessante para garantir um melhor aprendizado por parte da rede neural.
Conforme a base de dados é aumentada com os demais casos, tabela 11, é possivel perceber

que alguns parametros melhoram os resultados da correlagao como vg com w enquanto



Figura 18 — Plotagem dos parametros em relagdo ao comando de leme (0)
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Figura 19 — Plotagem dos parametros em relagdo ao comando de méquina (w)
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outros pioram como [ com 6.

A analise das correlagoes individuais e conjunta demonstra a irregularidade que
existe na base devido a complexidade em se realizar este tipo de manobra que pondera
diversos fatores simultaneamente. A maneira que a base foi gerada também influencia nos
resultados observados, ela foi produzida por préticos diferentes que possuem experiéncia e
técnicas de manobra diferentes, existem embarcacoes com propriedades fisicas distintas e
condigcoes ambientais que variam entre os casos. Essa diversidade torna a base rica em
situacoes que auxiliam a obter uma rede neural mais genérica, entretanto aumenta a
complexidade para obter os padroes de controle e gera a aparéncia cadtica das figuras 18 e

19.

Tabela 10 — Analise de correlacao das variaveis para o caso 2 do Suape 2017

Variaveis | Comando de leme Comando de maquina
Vg -0,32 0,38
Uy -0,29 0,36
I6] 0,54 -0,39
Vg 0,51 -0,01
Om 0,21 -0,01
0 - 0,59

Fonte: Autores

Tabela 11 — Analise de correlacao das variaveis para a base inteira de dados

Variaveis | Comando de leme Comando de maquina
Vg -0,18 0,40
Uy -0,25 0,04
B 0,05 -0,05
vg 0,06 -0,10
Om 0,15 -0,11
0y - 0,48

Fonte: Autores

8.3 Resultados finais

8.3.1 Arquitetura e treinamento

Existem diversos parametros que podem ser definidos nas redes neurais para obter
resultados mais apropriados a cada situacao. Portanto, definida a escolha da utilizacao
de redes neurais recorrentes, foram desenvolvidos diversos modelos pela alteracao da

arquitetura e dos hiperparametros, alguns com resultados melhores e outros piores. Para
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a primeira filtragem foram realizadas anélises mais simples como o uso do conjunto de
estados de simulacoes passadas nao utilizadas no treinamento a fim de verificar o erro
entre os comandos registrados e os previstos pelo controlador, semelhante ao realizado na
secao 8.1.

De posse dos resultados, os melhores foram selecionadas para realizacao de algumas
simulacoes preliminares com o Dyna para averiguar se existe realmente um indicio de
que a rede resulta em comandos de controle coerentes. Desses, foram selecionados os 4
modelos que apresentaram os resultados mais satisfatérios (tabela 6) para serem utilizados
no processo de validacao completo descrito no capitulo 7.

Figura 20 — Valor da funcao de custo para modelos de rede neural de controle de leme
obtida no Tensorboard em funcao da quantidade de epoch
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Fonte: Autores

Figura 21 — Valor da funcao de custo para modelos de rede neural de controle do comando
de maquina obtida no Tensorboard em funcao da quantidade de epoch
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Fonte: Autores

O Tensorboard permite observar o desenvolvimento da rede neural durante a fase

de treinamento. Nas figuras 20 e 21 é possivel observar a variagao da func¢ao de custo
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com o decorrer desta etapa nos controladores selecionados para comando de leme e de
maquina, respectivamente. Nota-se, portanto, que o processo de treinamento dos modelos
selecionados foi realizado com sucesso, uma vez que a fungao custo mede o erro da saida
prevista em relagao aos valores originais de teste. Pelos graficos, detecta-se que a funcao
custo é minimizada durante o processo de aprendizagem, ou seja, a rede passa a aderir
melhor aos dados conforme os epochs.

Verificado a adequagao do processo de treinamento destes modelos, em seguida
foi realizado o processo de validacao utilizando a interface de integracao, figura 13, para
realizar a simulagao via Dyna. Nas simulagoes, utilizou-se o modelo de navio Aframax,

tabelas 1 e 2, com os parametros de condigoes iniciais das tabelas 7, 8 e 9.

8.3.2 Variagao de posicionamento

Como descrito na secao 7.2, foi realizado a simulacao para os casos da tabela 7,
obtendo os resultados descritos na tabela 12. A figura 22 apresenta um caso de simulacao
realizado com sucesso, ou seja, nao ha ocoréncia de colisdes durante o trajeto. Os demais

resultados das simulagoes podem ser observados no apéndice A.

Tabela 12 — Resultados do teste de posicionamento v": sem colisao X: com colisao

Condigao inicial | Rede 1 Rede 2 Rede 3 Rede 4
1 v X 4 4
2 v X X 4
3 v X X v

Fonte: Autores

Figura 22 — Simulacao do controle da embarcacao através da rede 1 na condigao 1

Fonte: Autores
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8.3.3 Variacao de angulo de aproamento

Como descrito na secao 7.2, foi realizado a simulacao para os casos da tabela 8§,
obtendo os resultados descritos na tabela 13. A figura 23 apresenta um caso de simulacao
realizado com sucesso, ou seja, nao ha ocoréncia de colisdes durante o trajeto. Os demais

resultados das simulagoes podem ser observados no apéndice A.

Tabela 13 — Resultados do teste de angulo de aproamento v: sem colisao X: com colisao

Condigao inicial | Rede 1 Rede 2 Rede 3 Rede 4
4 v X 4 v
5(2) v X X v
6 X X X X

Fonte: Autores

Figura 23 — Simulacao do controle da embarcacao através da rede 1 na condigao 4

Fonte: Autores

8.3.4 Variacao de velocidade de guinada

Como descrito na segao 7.2, foi realizado a simulacao para os casos da tabela 9,
obtendo os resultados descritos na tabela 14. A figura 24 apresenta um caso de simulagao
realizado com sucesso, ou seja, nao ha ocoréncia de colisdes durante o trajeto. Os demais

resultados das simulagoes podem ser observados no apéndice A.
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Tabela 14 — Resultados do teste de velocidade de guinada v': sem colisao X: com colisao

Condigao inicial

Rede1l Rede2 Rede3 Rede4

7
8 (2)
9

v 4 X v
v X X 4
v X X v

Fonte: Autores

Figura 24 — Simulagao do controle da embarcacao através da rede 1 na condi¢ao 7

Fonte: Autores
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9 Discussao

9.1 Andlise de desempenho

A partir dos resultados das simulagoes obtidas, tabelas 12, 13 e 14, podemos avaliar
o desempenho das redes neurais durante as 7 simulagoes de acordo com o requisito primério
que ¢é a conducao do navio até o final do canal sem colisao. Vale notar que no teste 6,
tabela 13, nenhuma rede conseguiu controlar a embarcacgao até o final, tais resultados
podem ser justificados pela instabilidade do navio ser amplificada devido as condigoes
iniciais nessa simulacao, impossibilitando o controle pela rede neural.

Em uma primeira analise é possivel identificar um padrao de comportamento em

tres regides distintas do canal, como pode ser observado nas figuras 22, 23 e 24:

e Acima de 5 km distante do final do canal (regiGo 1): no inicio a rede procura se
estabilizar da condigao inicial aproximando e alinhando ao maximo possivel da linha
central;

e Entre 5 km e 2 km distante do final do canal (regidgo 2): nesse intervalo a rede busca
se manter a um valor constante de distancia da linha central conforme a aproximacao
que ela conseguiu no trecho anterior;

e Abaixo de 2 km distante do final do canal (regido 3): a rede inicia uma manobra de
entrada no trecho final do canal, que possui um aumento de largura, portanto, nao é
mais necessario manter o navio tao préximo da linha central. O objetivo principal
se torna reduzir a velocidade para conseguir atracar com seguranca e preparar a

embarcacao para a préxima manobra.

Por exemplo, utilizando a rede 1 na condicao inicial 4 podem ser apresentados
alguns graficos de interesse como o da figura 25. As linhas verticais delimitam as regices
citadas anteriormente para facilitar a analise e podem ser verificadas no grafico da distancia
ao final do canal. Para observar o alinhamento da embarcacao, o parametro mais relevante
é o course over ground (COG) local, ou seja, o angulo do vetor velocidade resultante, sendo
seu médulo denominado speed over ground (SOG), em relagao a direcao do canal, pois

isso é o que garante a trajetoria alinhada. Os padroes anteriores podem ser observados:

e Regiao 1: a embarcacao se afasta inicialmente da linha central devido a condicao

inicial, mas procura se aproximar logo em seguida. O COG local apresenta um desvio
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inicial que é corrigido tendendo a zero realizando o alinhamento;

e Regiao 2: a distancia a linha central se mantém mais estavel em aproximadamente

40 metros bombordo e o mesmo ocorre ao COG local préximo de 0 demonstrando o

alinhamento;

e Regiao 3: ocorre o desalinhamento do COG local, uma explicagao pode ser o fato

de estar realizando uma manobra parecida com o da figura 10 em que é necessario

realizar uma curva para entrada no berco voltado a bombordo. O SOG é reduzido

para garantir a baixa velocidade dentro dos requisitos.

Figura 25 — Parametros de distancia ao final do canal, da linha central, couse over ground
local e speed over ground da simulacao de controle da embarcacao através da
rede 1 na condi¢ao 4 onde o navio comega a simulagao com um angulo de
aproamento nao alinhado ao canal
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Em seguida, analisa-se o desempenho das redes nas simulacoes realizadas. Primei-

ramente, filtra-se os resultados entre a ocorréncia ou nao de colisao durante o trajeto.

Segundo os dados da tabela 15, é possivel observar que as redes 1 e 4 apresentaram um

desempenho satisfatorio ao passo que cada uma conseguiu conduzir a embarcagao sem




64

colisao em 6 das 7 simulagoes realizadas. A partir desses resultados, a analise dos requisitos

pode ser focada nos casos de sucesso.

Tabela 15 — Resultados gerais das simulagoes

Rede 1l Rede2 Rede3 Rede4
Sucesso 6 1 2 6
% sucesso | 86% 14% 28% 86%

Fonte: Autores

9.2  Andlise de requisitos

Pelos dados das simulagoes e segundo os requisitos da tabela 16 foram elaborados
os graficos das figuras 26, 27, 28 e 29 para a simulacao das redes 1 e 4 na condicao inicial
1. As informagoes para os demais casos podem ser observados no apéndice A.

Para avaliacao do primeiro requisito, as figuras 26 e 28 apresentam uma regiao
vermelha indicando um limite inferior de distancia em relacao a margem, 21 metros segundo
a boca do Aframax, que nao deve ser ultrapassado devido a iminéncia de uma colisao com
a delimitacao do canal.

Enquanto as figuras 27 e 29 avaliam o segundo requisito apresentando uma regiao
verde que determina a velocidade final que deve ser atingida pelo navio ao término da

manobra para possibilitar seu atracamento em seguranca.

Tabela 16 — Requisitos de projeto baseado na se¢ao 1.2 e nas caracteristicas do Aframax

da tabela 1
Distancia minima Velocidade maxima
as margens ao final do canal
21 m 5.0 nés (2.5 m/s)

Fonte: Autores
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Figura 26 — Grafico das distancias as margens durante a simulagao da rede 1 na condigao
inicial 1. A linha vermelha representa o requisito de distancia minima (21 m)
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Figura 27 — Gréfico de velocidade durante a simulacao da rede 1 na condigao inicial 1. A
linha verde representa o limite méximo da velocidade no final do canal (2.5

m/s)
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Figura 28 — Grafico das distancias as margens durante a simulagao da rede 4 na condicao
inicial 1. A linha vermelha representa o requisito de distancia minima (21 m)
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Figura 29 — Gréfico de velocidade durante a simulacao da rede 4 na condicao inicial 1. A
linha verde representa o limite maximo da velocidade no final do canal (2.5

m/s)
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Fonte: Autores

Da analise destas figuras e outras apresentadas no apéndice A, podem ser elaboradas
as tabelas de consolidacao dos resultados 17 e 18 que apresentam a adequacao das redes
neurais 1 e 4, respectivamente, aos requisitos de projeto.

Tabela 17 — Desempenho da rede 1 de acordo com os requisitos de distancia as margens e
velocidade

Rede 1 Requisitos
Cond. Inicial | Distancia Velocidade | Final

© I A W N
SNSNSNNANNS
NSNSNNASN S
AN NN N NN

Fonte: Autores

Tabela 18 — Desempenho da rede 4 de acordo com os requisitos de distancia as margens e
velocidade

Rede 4 Requisitos
Cond. Inicial | Distancia Velocidade | Final

© ~J W N
AN NN NS
NN X NN\ x
NN X NN\ X%

Fonte: Autores
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Apesar de ambas as redes conseguirem conduzir a embarcacao até o final do canal
sem colisao, analisando os desempenhos das mesmas perante os requisitos, nota-se que
a rede 1 atende aos requisitos em todas as simulagoes, enquanto a rede 4 nao atende o
requisito de velocidade maxima ao final do canal em duas condi¢oes iniciais (1 e 4), ou
seja, a embarcagao chega no final do canal com velocidade acima de 5.0 nds (2.5 m/s).
Para exemplificar tal diferenca, pode-se ver pelas figuras 27 e 29 que no final do percurso
a rede 1 consegue entrar na area verde que significa que a mesma atende o requisito de
velocidade, enquanto a rede 4 fica acima da mesma area. Quanto ao requisito de distancias
as margens, ambas as redes conseguem manter a embarcacao dentro da regiao proposta
pelo requisito (figuras 26 e 28). Com essas informacoes disponiveis, é possivel afirmar
que a rede neural 1 é a que apresenta os melhores resultados considerando os requisitos

estabelecidos.

9.3 Prézrimos passos

Para uma aplicacao real de um controlador de embarcacao qualquer, nao apenas
por meio de redes neurais, ¢ muito importante que ela possa ser utilizada em situagoes
genéricas, seja em canais com estruturas diferentes ou mesmo condi¢oes ambientais mais
severas. Desta maneira, listamos a seguir algumas tarefas que podem ser realizadas para

melhorar a performance e ampliar o escopo de aplicacao da solucao obtida:

e Generalizacao do controlador: ampliar a base de dados para simulacoes de outros
portos e considerar a condicao ambiental e os parametros fisicos da embarcagao como
parametros de entrada;

e Melhoria de performance: utilizar outros modelos de arquitetura, hiperparametros e
metodologias para definir a rede neural;

e Integracao completa com os simuladores do TPN: isso permitiria mais ferramentas de
avaliagao como a interface grafica de visao 360°, sugestoes de comandos aos praticos

e aprendizado continuo toda vez que fosse realizada uma simulagao.
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10 Conclusao

Nesse trabalho foi possivel aprender sobre o desenvolvimento de redes neurais e as
peculiaridades envolvidas para garantir uma boa performance, por exemplo, a importancia
de realizar um tratamento e uma analise prévia da base de dados a fim de garantir sua
qualidade e, consequentemente, uma boa aderéncia.

O processo de definigao da melhor arquitetura e dos melhores hiperparametros
depende muito da experiéncia e do conhecimento técnico do projetista, mas também da
realizacao de testes e validacoes devido ao caréter iterativo de seu desenvolvimento. Para
o problema proposto de navegacao em um canal de acesso, os dados de treinamento sao
sequéncias temporais, e os melhores resultados foram obtidos por meio do uso de redes
neurais recorrentes, fato este explicado devido ao modelo possuir uma memoéria que guarda
a relagao entre os estados.

O trabalho também abordou um processo de validagao pelo uso de simulacao
por meio do integrador numérico Dyna que inclui a implementacao de diversos fatores
que influenciam a manobrabilidade da embarcacao e torna a solu¢ao obtida muito mais
compativel com a realidade.

Em suma, os resultados obtidos neste trabalho demonstram que as redes neurais
recorrentes sao solucgoes interessantes para automatizar o processo de conducao de um
navio em um canal de acesso ao apresentar diversas simulagoes sem colisao e, inclusive,
dentro dos requisitos propostos. Entretanto, ainda sao necessarios trabalhos futuros de

melhoria para que possam ser generalizadas e aplicadveis em embarcacoes reais.
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Apéndice A — Resultados dos testes

Neste apéndice serao apresentados os resultados obtidos nos modelos das redes
neurais recorrentes da tabela 6 para as condigoes iniciais das tabelas 7, 8 e 9. Foi com base
nestes resultados que as observacoes da secao 8.3 foram elaboradas.

Em cada simulagao serao apresentados 2 conjuntos de dados: a trajetoria da
embarcagao no canal (superior esquerdo) e os parametros para avaliagado dos requisitos.
Esses parametro sao compostos pelo o moédulo da velocidade da embarcacao também
denominado speed over ground (superior direito) e as distancias da embarcacao as margens
bombordo e boreste (inferior esquerdo e direito, respectivamente).

Vale ressaltar algumas observagoes importantes. Primeiramente, na imagem da
trajetoria, a embarcagao nao estd na mesma escala e com o mesmo formato que o seu
modelo real, pois esta figura serve apenas para acompanhar seu percurso no canal durante
a simulacao.

Portanto, a avaliacao mais criteriosa dos resultados deve ser realizada nos parametros
apresentados. No grafico do speed over ground, a regiao verde representa o valor aceitdavel
ao final da manobra. Nos graficos das distancias, a regiao vermelha representa um valor que
nunca deve ocorrer durante a simulacao, pois, caso seja ultrapassado, a embarcacao estaria
na iminéncia de uma saida do canal. A forma como esses valores foram definidos esta
descrito em mais detalhes na secao 1.2. Finalmente, as linhas verticais, quando presentes,
indicam o valor de &;, em preto o valor de 5 quilometros e em cinza de 2 quilémetros, isso
é util para identificar em qual trecho do canal o navio estava em cada instante de tempo,

auxiliando na analise da manobra.
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Figura 31 — Manobra realizada pela rede 1 na condigao inicial 2
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Figura 32 — Manobra realizada pela rede 1 na condicao inicial 3
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Figura 33 — Manobra realizada pela rede 1 na condicao inicial 4
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Figura 34 — Manobra realizada pela rede 1 na condicao inicial 6
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Figura 35 — Manobra realizada pela rede 1 na condicao inicial 7
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Figura 40 — Manobra realizada pela rede 2 na condicao inicial 4
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Figura 41 — Manobra realizada pela rede 2 na condicao inicial 6
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Figura 42 — Manobra realizada pela rede 2 na condicao inicial 7
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Figura 43 — Manobra realizada pela rede 2 na condicao inicial 9
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Figura 44 — Manobra realizada pela rede 3 na condicao inicial 1
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Figura 46 — Manobra realizada pela rede 3 na condicao inicial 3
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Figura 47 — Manobra realizada pela rede 3 na condicao inicial 4
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Figura 48 — Manobra realizada pela rede 3 na condicao inicial 6
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Figura 49 — Manobra realizada pela rede 3 na condicao inicial 7
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Figura 51 — Manobra realizada pela rede 4 na condicao inicial 1
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Figura 52 — Manobra realizada pela rede 4 na condicao inicial 2
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Figura 53 — Manobra realizada pela rede 4 na condicao inicial 3
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Figura 54 — Manobra realizada pela rede 4 na condicao inicial 4
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Figura 55 — Manobra realizada pela rede 4 na condicao inicial 6
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Figura 56 — Manobra realizada pela rede 4 na condicao inicial 7
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Figura 57 — Manobra realizada pela rede 4 na condicao inicial 9
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